A Thermal Fatigue Model for Probabilistic Lifetime Strength of Propulsion System Components

Author(s):  
L. Boyce ◽  
C. C. Bast

This paper describes the development of methodology for a probabilistic material strength degradation model, that provides for quantification of uncertainty in the lifetime material strength of structural components of aerospace propulsion systems subjected to a number of diverse random effects. The model has most recently been extended to include thermal fatigue. The discussion of thermal fatigue, in the context of probabilistic material strength degradation, is the central feature of this paper. The methodology, for all effects, is embodied in two computer programs, PROMISS and PROMISC. These programs form a “material resistance” model that may be used in the aerospace structural reliability program, NESSUS or in other applications. A probabilistic material strength degradation model for thermal fatigue and other relevant effects, in the form of a postulated randomized multifactor interaction equation, is used to quantify lifetime material strength. Each multiplicative term in the model has the property that if the current value of an effect equals the ultimate value, then the lifetime strength will be zero. Also, if the current value of an effect equals the reference value, the term equals one and lifetime strength is not affected by that particular effect. Presently, the model includes up to four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep and thermal fatigue. Statistical analysis of experimental data for Inconel 718 obtained from the open literature and laboratory reports is also included in the paper. The statistical analysis provided regression parameters for use as the model’s empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep and thermal fatigue. Finally, using the PROMISS computer program, a sensitivity study was performed with the calibrated random model to illustrate the effects of mechanical fatigue, creep and thermal fatigue, at about 1000 °F, upon random lifetime strength.

2014 ◽  
Vol 619 ◽  
pp. 158-164 ◽  
Author(s):  
P. Maj ◽  
J. Zdunek ◽  
M. Gizynski ◽  
J. Mizera ◽  
K.J. Kurzydlowski

2007 ◽  
Vol 353-358 ◽  
pp. 1137-1140
Author(s):  
Sang Tae Kim ◽  
Seong Soo Jang

A new method of parameter determination in the fatigue residual strength degradation model is proposed. The new method and minimization technique are compared experimentally to account for the effect of tension-compression fatigue loading on structural materials. It is shown that the correlation between experimental results and the theoretical prediction of the fatigue life, fatigue life distribution obtained by the proposed method is very reasonable.


Alloy Digest ◽  
1959 ◽  
Vol 8 (2) ◽  

Abstract INCONEL 713C is a nickel-chromium cast alloy which possesses outstanding rupture strength at 1700 F. combined with excellent resistance to thermal fatigue and good castability. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance as well as machining and joining. Filing Code: Ni-50. Producer or source: International Nickel Company Inc..


Alloy Digest ◽  
1992 ◽  
Vol 41 (11) ◽  

Abstract INCONEL Alloy 625LCF is a special alloyed, melted, and processed version of INCONEL alloy 625 (Alloy Digest Ni-121, February 1967) to optimize low-cycle and thermal fatigue up to 1200 deg F (650 deg C). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming and joining. Filing Code: Ni-416. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
2007 ◽  
Vol 56 (8) ◽  

Abstract Orvar Superior is a premium Cr-Mo-V alloyed hot-work die steel with good resistance to thermal fatigue. The name “superior” is used to indicate that close control in special melting and refining has attained a high purity and very fine structure that produces isotropic properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-653. Producer or source: Böhler-Uddeholm North America.


2006 ◽  
Vol 23 (1) ◽  
pp. 29-37 ◽  
Author(s):  
G.D. Janaki Ram ◽  
A. Venugopal Reddy ◽  
K. Prasad Rao ◽  
G. Madhusudhan Reddy

2013 ◽  
Vol 21 (1) ◽  
pp. 43-51
Author(s):  
O. Bapokutty ◽  
◽  
Z. Sajuri ◽  
J. Syarif ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document