scholarly journals Suppression of Secondary Flows in a Mixed-Flow Pump Impeller by Application of 3D Inverse Design Method: Part 2 — Experimental Validation

Author(s):  
A. Goto ◽  
T. Takemura ◽  
M. Zangeneh

In Part I of this paper, a mixed-flow pump impeller was designed by a fully three-dimensional inverse design method, aimed at suppressing the secondary flows on the blade suction surface. In this part, the internal flow fields of the impeller are investigated experimentally, using flow visualization and phase-locked measurements of the impeller exit flow, in order to validate the effects of secondary flow suppression. The flow fields are compared with those of a conventional impeller, and it is confirmed that the secondary flows on the blade suction surface are well suppressed and the uniformity of the exit flow fields is improved substantially, in both circumferential and spanwise directions. The effects of tip clearance and the number of blades for the inverse designed impeller are also investigated experimentally and numerically.

1996 ◽  
Vol 118 (3) ◽  
pp. 544-551 ◽  
Author(s):  
A. Goto ◽  
T. Takemura ◽  
M. Zangeneh

In Part 1 of this paper, a mixed-flow pump impeller was designed by a fully three-dimensional inverse design method, aimed at suppressing the secondary flows on the blade suction surface. In this part, the internal flow fields of the impeller are investigated experimentally, using flow visualization and phase-locked measurements of the impeller exit flow, in order to validate the effects of secondary flow suppression. The flow fields are compared with those of a conventional impeller, and it is confirmed that the secondary flows on the blade suction surface are well suppressed and the uniformity of the exit flow fields is improved substantially, in both circumferential and spanwise directions. The effects of tip clearance and the number of blades for the inverse designed impeller are also investigated experimentally and numerically.


Author(s):  
M. Zangeneh ◽  
A. Goto ◽  
T. Takemura

This paper describes the design of the blade geometry of a medium specific speed mixed flow pump impeller by using a 3D inverse design method in which the blade circulation (or rVθ) is specified. The design objective being the reduction of impeller exit flow non-uniformity by reducing the secondary flows on the blade suction surface. The paper describes in detail the aerodynamic critria used for the suppression of secondary flows with reference to the loading distribution and blade stacking condition used in the design. The flow through the designed impeller is computed by Dawes viscous code, which indicates that the secondary flows are well suppressed on the suction surface. Comparison between the predicted exit flow field of the inverse designed impeller and a corresponding conventional impeller indicates that the suppression of secondary flows has resulted in substantial improvement in the exit flow field. Experimental comparison of the flow fields inside and at exit from the conventional and the inverse designed impeller is made in part 2 of the paper.


1996 ◽  
Vol 118 (3) ◽  
pp. 536-543 ◽  
Author(s):  
M. Zangeneh ◽  
A. Goto ◽  
T. Takemura

This paper describes the design of the blade geometry of a medium specific speed mixed flow pump impeller by using a three-dimensional inverse design method in which the blade circulation (or rVθ) is specified. The design objective is the reduction of impeller exit flow nonuniformity by reducing the secondary flows on the blade suction surface. The paper describes in detail the aerodynamic criteria used for the suppression of secondary flows with reference to the loading distribution and blade stacking condition used in the design. The flow through the designed impeller is computed by Dawes’ viscous code, which indicates that the secondary flows are well suppressed on the suction surface. Comparison between the predicted exit flow field of the inverse designed impeller and a corresponding conventional impeller indicates that the suppression of secondary flows has resulted in substantial improvement in the exit flow field. Experimental comparison of the flow fields inside and at exit from the conventional and the inverse designed impeller is made in Part 2 of the paper.


2021 ◽  
Vol 11 (2) ◽  
pp. 507
Author(s):  
Mengcheng Wang ◽  
Yanjun Li ◽  
Jianping Yuan ◽  
Fareed Konadu Osman

The spanwise distribution of impeller exit circulation (SDIEC) has an important influence on the performance of the impeller. To quantitatively study the influence of SDIEC on optimization results, a comprehensive optimization system composed of the computational fluid dynamics, inverse design method, design of experiment, surrogate model, and optimization algorithm was used to optimize a mixed flow pump impeller in two different cases. In the first case, the influence of SDIEC was ignored, while in the second case, the influence of SDIEC was considered. The result shows that the optimization upper limit can be further improved when the influence of SDIEC is considered in the optimization process. The pump efficiency of the preferred optimized impeller F1 obtained in the first case at 1.2Qdes, 1.0Qdes, and 0.8Qdes are increased by 6.48%, 2.41%, and 0.06%, respectively, over the baseline model. Moreover, the pump efficiency of the preferred optimized impeller S2 obtained in the second case further increased by 0.76%, 1.24%, and 1.21%, respectively, over impeller F1. Furthermore, the influence of SDIEC on the performance of the mixed flow pump is clarified by a comparative analysis of the internal flow field.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 260
Author(s):  
Mengcheng Wang ◽  
Yanjun Li ◽  
Jianping Yuan ◽  
Fareed Konadu Osman

When considering the interaction between the impeller and diffuser, it is necessary to provide logical and systematic guidance for their matching optimization. In this study, the goal was to develop a comprehensive matching optimization strategy to optimize the impeller and diffuser of a mixed flow pump. Some useful tools and methods, such as the inverse design method, computational fluid dynamics (CFD), design of experiment, surrogate model, and optimization algorithm, were used. The matching optimization process was divided into two steps. In the first step, only the impeller was optimized. Thereafter, CFD analysis was performed on the optimized impeller to get the circulation and flow field distribution at the outlet of the impeller. In the second step of optimization, the flow field and circulation distribution at the inlet of the diffuser were set to be the same as the optimized impeller outlet. The results show that the matching optimization strategy proposed in this study is effective and can overcome the shortcomings of single-component optimization, thereby further improving the overall optimization effect. Compared with the baseline model, the pump efficiency of the optimized model at 1.2Qdes, 1.0Qdes, and 0.8Qdes is increased by 6.47%, 3.68%, and 0.82%, respectively.


Author(s):  
Kosuke Ashihara ◽  
Akira Goto

An optimization approach for improving turbomachinery performance was proposed based on a three-dimensional inverse design method, a Computational Fluid Dynamics (CDF) and optimization algorithm. By combining the three-dimensional inverse design method and CFD predictions, the blade loading parameters which is the major inputs for the three-dimensional inverse design method were treated as design variables and the impeller performance predicted by CFD was treated as an objective function of the optimization problem. Firstly, to clarify the effects of optimization algorithm, mixed-flow pump impellers (Ns400), with a specific speed of 400 (m3/min,m,min−1) or 0.155 (non-dimensional), were optimized to improve the impeller efficiency by using several optimization algorithm. From these results, it was confirmed that turbomachinery optimization using the three-dimensional inverse design method is a multi-peak problem and it is essential to use exploratory techniques such as Simulated Annealing. Then, a mixed-flow pump impeller (Ns1350), with a specific speed of 1350 (m3/min,m,min−1) or 0.523 (non-dimensional), was optimized to improve the impeller efficiency with constraints for suction performance by Simulated Annealing. Reasonably high efficiency and high suction performance were confirmed by comparing the CFD results with those for the previous design which employed manual optimization.


2002 ◽  
Vol 124 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Akira Goto ◽  
Motohiko Nohmi ◽  
Takaki Sakurai ◽  
Yoshiyasu Sogawa

A computer-aided design system has been developed for hydraulic parts of pumps including impellers, bowl diffusers, volutes, and vaned return channels. The key technologies include three-dimensional (3-D) CAD modeling, automatic grid generation, CFD analysis, and a 3-D inverse design method. The design system is directly connected to a rapid prototyping production system and a flexible manufacturing system composed of a group of DNC machines. The use of this novel design system leads to a drastic reduction of the development time of pumps having high performance, high reliability, and innovative design concepts. The system structure and the design process of “Blade Design System” and “Channel Design System” are presented. Then the design examples are presented briefly based on the previous publications, which included a centrifugal impeller with suppressed secondary flows, a bowl diffuser with suppressed corner separation, a vaned return channel of a multistage pump, and a volute casing. The results of experimental validation, including flow fields measurements, were also presented and discussed briefly.


Author(s):  
Akira Goto

The complex three-dimensional flow fields in a mixed-flow pump impeller are investigated by applying the incompressible version of the Dawes’ 3D Navier-Stokes code. The applicability of the code is confirmed by comparison of computations with a variety of experimentally measured jet-wake flow patterns and overall performances at four different tip clearances including the shrouded case. Based on the computations, the interaction mechanism of secondary flows and the formation of jet-wake flow are discussed. In the case of large tip clearances, the reverse flow caused by tip leakage flow is considered to be the reason for the thickening of the casing boundary layer followed by the deterioration of the whole flow field.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Ramesh Agarwal

This paper investigates the influence of different tip clearances on the transient characteristics of mixed-flow pump under stall condition. The instantaneous internal flow fields of mixed-flow pump with four tip clearances (0.2 mm, 0.5 mm, 0.8 mm and 1.1 mm) are explored by conducting unsteady time accurate simulations. Reynolds-averaged Navier-Stokes (RANS) equations are employed in the simulations and the results of computations are compared with experimental data. The results show that the pump head decreases by 22.1% and the pump efficiency drops by 13.9% at design flow condition when the impeller tip clearance increases from 0.2 mm to 1.1 mm. The swirling flow occurs in the inlet pipe of the mixed-flow pump with different tip clearances under stall condition, and the initial starting point of the swirling flow gets further away from the impeller inlet with increase in tip clearance because of increase in circumferential velocity and change in momentum of the tip leakage flow (TLF). The high turbulent eddy dissipation (TED) regions in the flow are attributed to the TLF, swirling flow, back flow and stall vortex, and their intensity are affected by the change in tip clearance. The oscillating trend of time domain distribution of TED enhances first and then decreases with increase in tip clearance and it exhibits a propagation feature under the effect of stall vortex, while most of the energy in the frequency domain remains concentrated in the low frequency part under stall condition.


Sign in / Sign up

Export Citation Format

Share Document