scholarly journals Computation of Unsteady 3D Flow and Torque Transmission in Hydrodynamic Couplings

Author(s):  
A. Kost ◽  
N. K. Mitra ◽  
M. Fiebig

For the optimized design of hydrodynamic or fluid couplings an adequate understanding of the flow field in such devices is necessary. In a hydrodynamic coupling, torque is transmitted by fluid circulation due to a speed differential between the rotating pump impeller and a matching turbine runner. Detailed studies of the unsteady 3D flow and torque transmission in fluid couplings are reported here. A finite-volume method with non-staggered variable arrangement is used to solve the unsteady Navier-Stokes equations on boundary-fitted grids and for a rotating frame of reference. The results give further insights into the physical process of torque transmission and allow important conclusions for the design of hydrodynamic couplings.

Author(s):  
L. Bal ◽  
A. Kost ◽  
M. Fiebig ◽  
N. K. Mitra

The adequate understanding of the flow structure in fluid couplings is necessary for the optimized design of such devices. Up to now, empiricism plays an important role in design. Detailed studies of the unsteady 3D flow and torque transmission in fluid couplings were rarely carried out. In this paper the unsteady Reynolds time-averaged Navier-Stokes equations coupled with the k-ε model have been solved by a finite-volume method. The calculations were done by using boundary-fitted grids with non-staggered variable arrangement for a rotating frame of reference. Flow structures in fluid couplings were obtained. The results give insights into the physical process of torque transmission. A comparsion of the calculated torque transimission with the experimental measurements in the literature shows good agreement for low slip.


Author(s):  
T. Formanski ◽  
H. Huitenga ◽  
N. K. Mitra ◽  
M. Fiebig

Hydrodynamic couplings transmit torque by fluid circulation due to a speed differential between the impeller on the drive side and the runner on the driven side without mechanical contact. Detailed studies of the 3D flow in fluid couplings working at steady operating point were carried out in the last few years for laminar and turbulent flows. In this paper a study of fluid couplings working under unsteady operating conditions is reported for the first time. The unsteady Reynolds averaged Navier-Stokes equations together with the k-ϵ model have been solved by a finite-volume method. The calculations were done by using contour-fitted grids with non-staggered variable arrangement in a rotating frame of reference. The results give insight into the flow structure inside a coupling under unsteady working condition. An integration of the flow field for the considered operating points yields the transmitted torque. The time history of the change of the moment of momentum gives further insights into the behaviour of a fluid coupling under unsteady operating conditions.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


2010 ◽  
Vol 297-301 ◽  
pp. 924-929
Author(s):  
Inès Bhouri Baouab ◽  
Nejla Mahjoub Said ◽  
Hatem Mhiri ◽  
Georges Le Palec ◽  
Philippe Bournot

The present work consists in a numerical examination of the dispersion of pollutants discharged from a bent chimney and crossing twin similar cubic obstacles placed in the lee side of the source. The resulting flow is assumed to be steady, three-dimensional and turbulent. Its modelling is based upon the resolution of the Navier Stokes equations by means of the finite volume method together with the RSM (Reynolds Stress Model) turbulent model. This examination aims essentially at detailing the wind flow perturbations, the recirculation and turbulence generated by the presence of the twin cubic obstacles placed tandem at different spacing distances (gaps): W = 4 h, W = 2 h and W = 1 h where W is the distance separating both buildings.


1998 ◽  
Vol 14 (3) ◽  
pp. 153-159 ◽  
Author(s):  
Chou-Jiu Tsai ◽  
Ger-Jyh Chen

ABSTRACTIn this study, fluid flow around bluff bodies are studied to examine the vortex shedding phenomenon in conjuction with the geometrical shapes of these vortex shedders. These flow phenomena are numerically simulated. A finite volume method is employed to solve the incompressible two-dimensional Navier-Stokes equations. Thus, quantitative descriptions of the vortex shedding phenomenon in the near wake were made, which lead to a detailed description of the vortex shedding mechanism. Streamline contours, figures of lift coefficent, and figures of drag coefficent in various time, are presented, respectively, for a physical description.


Author(s):  
Elisabeth Longatte

This work is concerned with the modelling of the interaction of a fluid with a rigid or a flexible elastic cylinder in the presence of axial or cross-flow. A partitioned procedure is involved to perform the computation of the fully-coupled fluid solid system. The fluid flow is governed by the incompressible Navier-Stokes equations and modeled by using a fractional step scheme combined with a co-located finite volume method for space discretisation. The motion of the fluid domain is accounted for by a moving mesh strategy through an Arbitrary Lagrangian-Eulerian (ALE) formulation. Solid dyncamics is modeled by a finite element method in the linear elasticity framework and a fixed point method is used for the fluid solid system computation. In the present work two examples are presented to show the method robustness and efficiency.


Sign in / Sign up

Export Citation Format

Share Document