Sizing of a Gas Turbine for Repowering of Cogeneration Power Plant Ljubljana by Mathematical Optimisation

Author(s):  
Mihael Gabriel Tomšič ◽  
Olgica Perović

The paper deals with optimal sizing of a gas turbine for repowering of cogeneration power plant Ljubljana considering possible plant operational strategy with respect to variations of electric and heat loads and energy costs. CHP plant is a main source for the Ljubljana town district heating system. Existing plant consists of two condensing steam turbines with steam extraction, back pressure turbine with steam extraction, auxiliary steam and hot water boilers for peak heat load production. This system delivers up to 111 MW into the power grid and up to 348 MW of heat. Repowering with gas turbine generator set with additionally fired heat recovery boiler is considered. For uncoupling heat and power generation a heat storage tank is assumed. For sizing of new equipment and plant operational strategy a model based on mixed-integer linear programming was developed. Zero - one integer variables are adopted to indicate the on/off status of operation, continuous variables to indicate the operational level of each constituent equipment and an optimal solution is derived by branch and bound method. Two prospective sizes of TG sets were tested for range of assumptions regarding power purchase tariff schedules. Different optimal operation policies resulted. The study provides background for contract negotiation and for investment decisions.

Author(s):  
Ryohei Yokoyama ◽  
Masashi Ohkura ◽  
Tetsuya Wakui

Some optimal operation methods based on the mixed-integer linear programming (MILP) have been proposed to operate energy supply plants properly from the viewpoints of economics, energy saving, and CO2 emission reduction. However, most of the methods are effective only under certain energy demands. In operating an energy supply plant actually, it is necessary to determine the operational strategy properly based on predicted energy demands. In this case, realized energy demands may differ from the predicted ones. Therefore, it is necessary to determine the operational strategy so that it is robust against the uncertainty in energy demands. In this paper, an optimization method based on the MILP is proposed to conduct the robust optimal operation of energy supply plants under uncertain energy demands. The uncertainty in energy demands is expressed by their intervals. The operational strategy is determined to minimize the maximum regret in the operational cost under the uncertainty. In addition, a hierarchical relationship among operation modes and on/off states of equipment, energy demands, and energy flow rates of equipment is taken into account. First, a general formulation of a robust optimal operation problem is presented, which is followed by a general solution procedure. Then, in a numerical study, the proposed method is applied to a gas turbine cogeneration plant for district energy supply. Through the study, some features of the robust optimal operation are clarified, and the validity and effectiveness of the proposed method are ascertained.


Author(s):  
Ryohei Yokoyama

It has become important for operators to determine operational strategies of energy supply plants appropriately corresponding to energy demands varying with season and time from the viewpoints of economics, energy saving, and reduction in CO2 emission. Especially, cogeneration plants produce heat and power simultaneously, which increases alternatives for operational strategies. This makes it more important for operators to determine operational strategies of cogeneration plants appropriately. In this paper, for the purpose of assisting operators or operating plants automatically, an optimal operational planning method based on the mixed-integer linear programming is developed to determine the operational strategy of equipment so as to minimize the operational cost, in consideration of equipment minimum up and down times for each piece of equipment to be operated with appropriate numbers of startups and shutdowns. In the numerical study, the proposed method is applied to the daily operational planning of a gas turbine cogeneration plant for district energy supply. It is clarified how the constraints for minimum up and down times affect the operational strategy and cost. Through the study, the validity and effectiveness of the proposed method is ascertained.


Author(s):  
Ryohei Yokoyama

It has become important for operators to determine operational strategies of energy supply plants appropriately corresponding to energy demands varying with season and time from the viewpoints of economics, energy saving, and recently reduction in CO2 emission. Especially, cogeneration plants produce heat and power simultaneously, which increases alternatives for operational strategies. This makes it more important for operators to determine operational strategies of cogeneration plants appropriately. In this paper, for the purpose of assisting operators or operating plants automatically, an optimal operational planning method based on the mixed-integer linear programming is developed to determine the operational strategy of equipment so as to minimize the operational cost, in consideration of equipment minimum up and down times for each piece of equipment to be operated with appropriate numbers of startups and shutdowns. In the numerical study, the proposed method is applied to the daily operational planning of a gas turbine cogeneration plant for district energy supply. It is clarified how the constraints for minimum up and down times affect the operational strategy and cost. Through the study, the validity and effectiveness of the proposed method is ascertained.


Author(s):  
Ryohei Yokoyama ◽  
Masashi Ohkura ◽  
Tetsuya Wakui

Some optimal operation methods based on the mixed-integer linear programming have been proposed to operate energy supply plants properly from the viewpoints of economics, energy saving, and CO2 emission reduction. However, most of the methods are effective only under certain energy demands. In operating an energy supply plant actually, it is necessary to determine the operational strategy properly based on predicted energy demands. In this case, realized energy demands may differ from the predicted ones. Therefore, it is necessary to determine the operational strategy so that it is robust against the uncertainty in energy demands. In this paper, an optimization method based on the mixed-integer linear programming is proposed to conduct the robust optimal operation of energy supply plants under uncertain energy demands. The uncertainty in energy demands is expressed by their intervals. The operational strategy is determined to minimize the maximum regret in the operational cost under the uncertainty. In addition, a hierarchical relationships among operation modes and on/off states of equipment, energy demands, and energy flow rates of equipment are taken into account. First, a general formulation of a robust optimal operation problem is presented, which is followed by a general solution procedure. Then, in a numerical study, the proposed method is applied to a gas turbine cogeneration plant for district energy supply. Through the study, some features of the robust optimal operation are clarified, and the validity and effectiveness of the proposed method are ascertained.


Author(s):  
Ryohei Yokoyama ◽  
Koichi Ito

A rational method of determining the operational strategy of energy supply plants in consideration of equipment startup/shutdown cost is proposed. The operational planning problem is formulated as a large-scale mixed-integer linear programming one, in which on/off status and energy flow rates of equipment are determined so as to minimize the sum of energy supply and startup/shutdown costs over the period considered. By utilizing a special structure of the problem, an algorithm of solving the problem efficiently is proposed. Through a numerical study on the daily operational planning of a gas turbine cogeneration plant for district heating and cooling, the effectiveness of the proposed algorithm is ascertained in terms of computation time, and the influence of equipment startup/shutdown cost on the operational strategy and cost is clarified.


Author(s):  
Weimar Mantilla ◽  
José García ◽  
Rafael Guédez ◽  
Alessandro Sorce

Abstract Under new scenarios with high shares of variable renewable electricity, combined cycle gas turbines (CCGT) are required to improve their flexibility, in terms of ramping capabilities and part-load efficiency, to help balance the power system. Simultaneously, liberalization of electricity markets and the complexity of its hourly price dynamics are affecting the CCGT profitability, leading the need for optimizing its operation. Among the different possibilities to enhance the power plant performance, an inlet air conditioning unit (ICU) offers the benefit of power augmentation and “minimum environmental load” (MEL) reduction by controlling the gas turbine inlet temperature using cold thermal energy storage and a heat pump. Consequently, an evaluation of a CCGT integrated with this inlet conditioning unit including a day-ahead optimized operation strategy was developed in this study. To establish the hourly dispatch of the power plant and the operation mode of the inlet conditioning unit to either cool down or heat up the gas turbine inlet air, a mixed-integer linear optimization (MILP) was formulated using MATLAB, aiming to maximize the operational profit of the plant within a 24-hours horizon. To assess the impact of the proposed unit operating under this dispatch strategy, historical data of electricity and natural gas prices, as well as meteorological data and CO2 emission allowances price, have been used to perform annual simulations of a reference power plant located in Turin, Italy. Furthermore, different equipment capacities and parameters have been investigated to identify trends of the power plant performance. Lastly, a sensitivity analysis on market conditions to test the control strategy response was also considered. Results indicate that the inlet conditioning unit, together with the dispatch optimization, increases the power plant’s operational profit by achieving a wider operational range, particularly important during peak and off-peak periods. For the specific case study, it is estimated that the net present value of the CCGT integrated with the ICU is 0.5% higher than the power plant without the unit. In terms of technical performance, results show that the unit reduces the minimum environmental load by approximately 1.34% and can increase the net power output by 0.17% annually.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung ◽  
Fabio Schuler

Gas turbine-based power plants generate a significant portion of world’s electricity. This paper presents the modeling of a gas turbine-based cogeneration cycle. One of the reasons for the relatively low efficiency of a single gas turbine cycle is the waste of high-grade energy at its exhaust stream. In order to recover this wasted energy, steam and/or hot water can be cogenerated to improve the cycle efficiency. In this work, a cogeneration power plant is introduced to use this wasted energy to produce superheated steam for industrial processes. The cogeneration system model was developed based on the data from the Whitby cogeneration power plant in ASPEN PLUS®. The model was validated against the operational data of the existing power plant. The electrical and total (both electrical and thermal) efficiencies were around 40% and 70% (LHV), respectively. It is shown that cogenerating electricity and steam not only significantly improve the general efficiency of the cycle but it can also recover the output and efficiency losses of the gas turbine as a result of high ambient temperature by generating more superheated steam. Furthermore, this work shows that the model could capture the operation of the systems with an acceptable accuracy.


Author(s):  
Tadashi Narabayashi ◽  
Yoichiro Shimazu ◽  
Toshihiko Murase ◽  
Masatoshi Nagai ◽  
Michitsugu Mori ◽  
...  

A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to use as a passive ECCS pump and also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. In order to develop a high reliability passive ECCS pump and a compact feedwater heater, it is necessary to quantify the characteristics between physical properties of the flow field. We carried out experiments to observe the internal behavior of the water jet as well as measure the velocity of steam jet using a laser Doppler velocimetry. Its performance depends on the phenomena of steam condensation onto the water jet surface and heat transfer in the water jet due to turbulence on to the phase-interface. The analysis was also conducted by using a CFD code with the separate two-phase flow models. With regard to the simplified feed-water system, size of four-stage SI system is almost the same as the model SI that had done the steam and water test that pressures were same as that of current ABWR. The authors also conducted the hot water supply system test in the snow for a district heating. With regard to the SI core cooling system, the performance tests results showed that the low-pressure SI core cooling system will decrease the PCT to almost the same as the saturation temperature of the steam pressure in a pressure vessel. As it is compact equipment, SI is expected to bring about great simplification and materials-saving effects, while its simple structure ensures high reliability of its operation, thereby greatly contributing to the simplification of the power plant for not only an ABWR power plant but also a small PWR/ BWR for district heating system.


Author(s):  
Janpeter Ku¨hnel ◽  
Reza S. Abhari

This paper presents a methodology to optimize the part load behavior of complex power plant cycles. As free optimization parameters the traditional continuous control parameter and the activation/deactivation of defined plant components are considered resulting in a mixed integer non-linear programming problems (MINLP). The procedure starts with a continuous process on either side of the non-linearity in part load, while refining the steps as it approaches the discontinuity. It is shown that good convergence around the non-linearity can be found with the present scheme. For part load operation a number of continuous and binary free optimization parameters are available creating a challenging optimization problem. The developed procedure is applied to a conventional steam cycle power plant, which is parallel repowered with a modern gas turbine. The resulting power plant layout is a hybrid coal and gas fired combined cycle. As objective function the maximized overall thermal efficiency and the minimized fuel costs are two examples chosen. Investigating the minimized fuel costs as the objective function the optimized operation strategy is found to be an unique function of the fuel price ratio between coal and gas for the chosen layout. Finally we show, that the operation strategy can be notably improved by considering the deactivation of cycle components for minimizing the fuel costs and for maximizing the cycle efficiency. For example the cycle efficiency can be improved up to 2% by deactivating the high pressure feed water preheating. The fuel costs are reduced by 20% for a particular load point by deactivating the gas turbine.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2900
Author(s):  
Natalia Naval ◽  
Jose M. Yusta

The effects of climate change seriously affect agriculture at different latitudes of the planet because periods of drought are intensifying and the availability of water for agricultural irrigation is reducing. In addition, the energy cost associated with pumping water has increased notably in recent years due to, among other reasons, the maximum demand charges that are applied annually according to the contracted demand in each facility. Therefore, very efficient management of both water resources and energy resources is required. This article proposes the integration of water-energy management in a virtual power plant (VPP) model for the optimization of energy costs and maximum demand charges. For the development of the model, a problem related to the optimal operation of electricity generation and demand resources arises, which is formulated as a nonlinear mixed-integer programming model (MINLP). The objective is to maximize the annual operating profit of the VPP. It is worth mentioning that the model is applied to a large irrigation system using real data on consumption and power generation, exclusively renewable. In addition, different scenarios are analyzed to evaluate the variability of the operating profit of the VPP with and without intraday demand management as well as the influence of the wholesale electricity market price on the model. In view of the results obtained, the model that integrates the management of the water-energy binomial increases the self-consumption of renewable energy and saves electricity supply costs.


Sign in / Sign up

Export Citation Format

Share Document