scholarly journals A New Gas Turbine Cycle for Economical Power Boosting

Author(s):  
Motoaki Utamura ◽  
Isao Takehara ◽  
Nobuyuki Horii ◽  
Takaaki Kuwahara

A Moisture Air Turbine (MAT) cycle is proposed for improving the characteristics of land based gas turbine by injecting atomized water at inlet to compressor. The power boosting mechanism of MAT is understood as composits of those of following existing systems: inlet air cooling system, inter-cooling and steam injection. Experiments using a 15MW class axial flow load compressor have been carried out to reveal that water evaporation in compressor could reduce compressor work in an efficient manner. Moreover, this technology has been demonstrated by means of 130MW class simple cycle gas turbine power plant to show that a small amount of water consumption is sufficient to increase power output. Very efficient evaporation could be achieved provided the size of water droplet is controlled properly. The amount of water consumption is much less than that of conventional inlet air cooling system with cooling tower for heat rejection. Incorporating water droplet evaporation profile into consideration, realistic cycle calculation model has been developed to predict power output with water injection. It has been shown that this technology is economically achievable. It should be stressed that contrary to well known evaporative cooler, MAT cycle could provide power output at a desired value within its capability regardless of ambient humidity condition.

Volume 1 ◽  
2004 ◽  
Author(s):  
Mohammad Ameri ◽  
Hamid Nabati ◽  
Alireza Keshtgar

Gas turbines are almost constant volume machines at a specific rotating speed, i.e., air intake is limited to a nearly fixed volume of air regardless of ambient air conditions. As air temperature rises, its density falls. Thus, although the volumetric flow rate remains constant, the mass flow rate is reduced as air temperature rises. Power output is also reduced as air temperature rises because power output is proportional to mass flow rate. This power output reduction is from 0.5% to 0.9% of the ISO output power for every 1°C rise in the ambient temperature. The solution of this problem is very important because the peak demand season also happens in the summer. One of the useful methods to overcome this problem is to apply the fog inlet air cooling system for the gas turbines. In this paper the Rey Power Plant site climate conditions in the summer have been studied. The design conditions regarding the dry bulb temperature and relative humidity have been selected. The different inlet air cooling systems have been studied and the Fog system has been chosen. The economical study has shown that this system is very cheap in comparison with the installation of the new gas turbines. The capital cost is estimated to be 40 $/KW. The pay back period is around 1.5 year. The testing of this system has shown that the average power capacity of the power plant is increased by 19 MW and prevented the installation of a new gas turbine.


Author(s):  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto ◽  
P. R. Spina ◽  
S. Ingistov

In the last years, among all different gas turbine inlet air cooling techniques, an increasing attention to fogging approach is dedicated. The various fogging strategies seem to be a good solution to improve gas turbine or combined cycle produced power with low initial investment cost and less installation downtime. In particular, overspray fogging and interstage injection involve two-phase flow consideration and water evaporation during compression process (also known as wet compression). According to the Author’s knowledge, the field of wet compression is not completely studied and understood. In the present paper, all the principal aspects of wet compression and in particular the influence of injected water droplet diameter and surface temperature, and their effect on gas turbine performance and on the behavior of the axial compressor (change in axial compressor performance map due to the water injection, redistribution of stage load, etc.) are analyzed by using a calculation code, named IN.FO.G.T.E. (INterstage FOgging Gas Turbine Evaluation), developed and validated by the Authors.


2018 ◽  
Vol 225 ◽  
pp. 01020
Author(s):  
Thamir K. Ibrahim ◽  
Mohammed K. Mohammed ◽  
Omar I. Awad ◽  
Rizalman Mamat ◽  
M. Kh Abdolbaqi

A basic goal of operation management is to successfully complete the life cycle of power systems, with optimum output against minimal input. This document intends calculating both, the performance and the life cycle cost of a gas turbine fitted with an inlet air cooling mechanism. Correspondingly, both a thermodynamic and an economic model are drawn up, to present options towards computing the cooling loads and the life cycle costs. The primary observations indicate that around 120MWh of power is derived from gas turbine power plants incorporating the cooling mechanism, compared to 96.6 MWh for units without the mechanism, while the life cycle cost is lower for units incorporating the cooling process. This indicates benefits in having the mechanism incorporated in the architecture of a gas turbine.


Author(s):  
Andrii Radchenko ◽  
Lukasz Bohdal ◽  
Yang Zongming ◽  
Bohdan Portnoi ◽  
Veniamin Tkachenko

Author(s):  
Farshid Zabihian ◽  
Alan S. Fung ◽  
Fabio Schuler

Gas turbine-based power plants are very sensitive to ambient conditions and their output power and efficiency can be decreased significantly with increase in the ambient temperature. Various compressor inlet air cooling systems have been proposed and utilized to reduce inlet air temperature to the system, including evaporative systems e.g. media and fogging, and mechanical cooling systems. In this work, different techniques for compressor inlet air cooling are briefly reviewed. Then, the fogging system employed in the Whitby cogeneration power plant is explained with particular attention to the location of the system installation. A model of the gas turbine-based cogeneration plant is also developed to simulate the Whitby cogeneration power plant. The effects of fogging compressor inlet air cooling system on the performance of the plant are investigated. The results indicate that at an ambient temperature of 30°C and relative humidity of 40% the inlet cooling of as high as 8.4°C is possible which can increase output power to more than 50 MW. Also, it is found that the model can predict the gas turbine exhaust temperature and the plant’s power production with the error level of lower than 0.5% and 3%, respectively.


2019 ◽  
pp. 10-14
Author(s):  
Андрій Миколайович Радченко ◽  
Богдан Сергійович Портной ◽  
Сергій Анатолійович Кантор ◽  
Ігор Петрович Єсін

Significant fluctuations in the current temperature and relative humidity of the ambient air lead to significant changes in the heat load on the air cooling system at the inlet of the gas turbine unit, which urgently poses the problem of choosing their design heat load, as well as evaluating the efficiency of the air cooling system for a certain period of time. The efficiency of deep air cooling at the inlet of gas turbine units was studied with a change during July 2015–2018 for climatic conditions of operation at the compressor station Krasnopolie, Dnepropetrovsk region (Ukraine). For air cooling, the use of a waste heat recovery chiller, which transforms the heat of exhaust gases of gas turbine units into the cold, has been proposed. The efficiency of air cooling at the inlet of gas turbine units for different temperatures has been analyzed: down to 15 °C – an absorption lithium-bromide chiller, which is used as the first high-temperature stage for pre-cooling of ambient air, and down to 10 °C – a combined absorption-ejector chiller (with using a refrigerant low-temperature air cooler as the second stage of air cooling). The effect of air-cooling was assessed by comparing the increase in the production of mechanical energy as a result of an increase in the power of a gas turbine unit and fuel saved during the month of July for 2015-2018 in accumulating. Deeper air cooling at the inlet of the gas turbine unit to a temperature of 10 °C in a combined absorption-ejector chiller compared to its traditional cooling to 15 °C in an absorption bromine-lithium chiller provides a greater increase in net power and fuel saved. It is shown that due to a slight discrepancy between the results obtained for 2015-2018, a preliminary assessment of the efficiency of air cooling at the inlet of gas turbine plants can be carried out for one year.


Author(s):  
Maurizio De Lucia ◽  
Ennio Carnevale ◽  
Massimo Falchetti ◽  
Alberto Tesei

Gas Turbine (GT) performance seriously deteriorates at increased ambient temperature. This study analyses the possibility of improving GT power output and efficiency by installing a gas turbine inlet air cooling system. Different cooling systems were analyzed and preliminary cost evaluations for each system were carried out. The following three cooling systems were considered in detail: a) Traditional compression cooling system; b) Absorption single-acting cooling system using a solution of lithium bromide; c) Absorption double-acting cooling system using a solution of lithium bromide. Results clearly indicate that there is a great potential for GT performance enhancement by application of an Inlet Air Cooling (IAC). Technical and economical analyses lead to selection of a particular type of IAC for significant savings in capital outlay, operational and maintenance costs and other additional advantages.


Sign in / Sign up

Export Citation Format

Share Document