Boundary Layer Transition at High Levels of Free Stream Turbulence

Author(s):  
Masaharu Matsubara ◽  
P. Henrik Alfredsson ◽  
K. Johan A. Westin

Transition to turbulence in laminar boundary layers subjected to high levels of free stream turbulence (FST) can still not be reliably predicted, despite its technical importance, e.g. in the case of boundary layers developing on gas turbine blades. In a series of experiments in the MTL-wind tunnel at KTH the influence of grid-generated FST on boundary layer transition has been studied, with FST-levels up to 6%. It was shown from both flow visualisation and hot-wire measurements that the boundary layer develops unsteady streaky structures with high and low streamwise velocity. This leads to large amplitude low frequency fluctuations inside the boundary layer although the mean flow is still close to the laminar profile. Breakdown to turbulence occurs through an instability of the streaks which leads to the formation of turbulent spots. Accurate physical modelling of these processes seems to be needed in order to obtain a reliable prediction method.

1997 ◽  
Vol 119 (3) ◽  
pp. 420-426 ◽  
Author(s):  
R. J. Volino ◽  
T. W. Simon

Measurements from heated boundary layers along a concave-curved test wall subject to high (initially 8 percent) free-stream turbulence intensity and strong (K = (ν/U∞2) dU∞/dx) as high as 9 × 10−6) acceleration are presented and discussed. Conditions for the experiments were chosen to roughly simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean velocity and temperature profiles as well as skin friction and heat transfer coefficients are presented. The transition zone is of extended length in spite of the high free-stream turbulence level. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low-free-stream-turbulence, turbulent flow correlations, but remain well above laminar flow values. The mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. To the authors’ knowledge, this is the first detailed documentation of a high-free-stream-turbulence boundary layer flow in such a strong acceleration field.


Author(s):  
Jonathan H. Watmuff

Experiments are described in which well-defined FSN (Free Stream Nonuniformity) distributions are introduced by placing fine wires upstream of the leading edge of a flat plate. Large amplitude spanwise thickness variations are present in the downstream boundary layer resulting from the interaction of the laminar wakes with the leading edge. Regions of elevated background unsteadiness appear on either side of the peak layer thickness, which share many of the characteristics of Klebanoff modes, observed at elevated Free Stream Turbulence (FST) levels. However, for the low background disturbance level of the free stream, the layer remains laminar to the end of the test section (Rx ≈ l.4×106) and there is no evidence of bursting or other phenomena associated with breakdown to turbulence. A vibrating ribbon apparatus is used to demonstrate that the deformation of the mean flow is responsible for substantial phase and amplitude distortion of Tollmien-Schlichting (TS) waves. Pseudo-flow visualization of hot-wire data shows that the breakdown of the distorted waves is more complex and occurs at a lower Reynolds number than the breakdown of the K-type secondary instability observed when the FSN is not present.


2011 ◽  
Vol 684 ◽  
pp. 60-84 ◽  
Author(s):  
A. C. Mandal ◽  
J. Dey

AbstractBoundary layer transition induced by the wake of a circular cylinder in the free stream has been investigated using the particle image velocimetry technique. Some differences between simulation and experimental studies have been reported in the literature, and these have motivated the present study. The appearance of spanwise vortices in the early stage is further confirmed here. A spanwise vortex appears to evolve into a $ \mrm{\Lambda} $/hairpin vortex; the flow statistics also confirm such vortices. With increasing Reynolds number, based on the cylinder diameter, and with decreasing cylinder height from the plate, the physical size of these hairpin-like structures is found to decrease. Some mean flow characteristics, including the streamwise growth of the disturbance energy, in a wake-induced transition resemble those in bypass transition induced by free stream turbulence. Streamwise velocity streaks that are eventually generated in the late stage often undergo sinuous-type oscillations. Similar to other transitional flows, an inclined shear layer in the wall-normal plane is often seen to oscillate and shed vortices. The normalized shedding frequency of these vortices, estimated from the spatial spacing and the convection velocity of these vortices, is found to be independent of the Reynolds number, similar to that in ribbon-induced transition. Although the nature of free stream disturbance in a wake-induced transition and that in a bypass transition are different, the late-stage features including the flow breakdown characteristics of these two transitions appear to be similar.


Author(s):  
S. K. Roberts ◽  
M. I. Yaras

This paper presents experimental results documenting the combined effects of surface roughness and free-stream turbulence level on boundary-layer transition. The experiments were conducted on a flat surface, upon which a pressure distribution similar to those prevailing on the suction side of turbine blades was imposed. The test matrix consists of four variations in the roughness conditions, at each of three free-stream turbulence levels and two flow Reynolds numbers. The ranges of these parameters considered in the study, which are typical of low-pressure turbines, resulted in both attached-flow and separation-bubble transition. The experimental results show that the transition inception location remains sensitive to surface roughness with increasing free-stream turbulence. Through spectral analysis of the velocity signals, this is shown to be due to earlier appearance and larger amplitude of Tollmien-Schlichting instability waves in both attached-flow and separation-bubble transition. In the test cases in which a separation-bubble is present, the rate of transition is seen to be insensitive to surface roughness, and only mildly sensitive to free-stream turbulence.


1997 ◽  
Vol 119 (3) ◽  
pp. 427-432 ◽  
Author(s):  
R. J. Volino ◽  
T. W. Simon

Measurements from heated boundary layers along a concave-curved test wall subject to high (initially 8 percent) free-stream turbulence intensity and strong (K = (ν/U∞2 dU∞/dx, as high as 9 × 10−6) acceleration are presented and discussed. Conditions for the experiments were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Turbulence statistics, including the turbulent shear stress, the turbulent heat flux, and the turbulent Prandtl number are presented. The transition zone is of extended length in spite of the high free-stream turbulence level. Turbulence quantities are strongly suppressed below values in unaccelerated turbulent boundary layers. Turbulent transport quantities rise with the intermittency, as the boundary layer proceeds through transition. Octant analysis shows a similar eddy structure in the present flow as was observed in transitional flows under low free-stream turbulence conditions. To the authors’ knowledge, this is the first detailed documentation of a high-free-stream-turbulence boundary layer flow in such a strong acceleration field.


Author(s):  
Ken-ichi Funazaki ◽  
Takashi Kitazawa ◽  
Kazuyuki Koizumi ◽  
Tadashi Tanuma

The objective of this study is to investigate effects of favorable pressure gradient as well as free-stream turbulence upon wake-induced boundary layer transition on a flat plate. Likewise in the previous study by Funazaki (1996), a spoked-wheel type wake generator is employed in this study. Two identical flat plates with sharp edge are used as test model. One of them is for measurement of boundary layers over the test plate by use of a single hot-wire probe, and the other is provided with thin stainless-steel foils on the surface to measure wake-affected heat transfer along the surface. Free-stream turbulence intensities are controlled with several types of turbulence grids. Pressure gradients over the test surface are adjusted by changing an inclination angle of the plate located opposite to the test model. In Part I, transition models proposed by Mayle and Dullenkopf (1990b) and Funazaki (1996a, 1996b) are compared with the experimental data obtained in this study to examine how such a model succeeds or fails in predicting the wake-induced boundary layer transition under the influences of favorable pressure gradient with a low free-stream turbulence.


Author(s):  
Heinz-Adolf Schreiber ◽  
Wolfgang Steinert ◽  
Bernhard Küsters

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4%. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40% of chord. For high turbulence levels (Tu > 3%) and high Reynolds numbers transition propagates upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably and at Tu = 4% bypass transition is observed near 7–10% of chord. Experimental results are compared to theoretical predictions using the transition model which is implemented in the MISES code of Youngren and Drela. Overall the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.


Author(s):  
Michael P. Schultz ◽  
Ralph J. Volino

An experimental investigation has been carried out on a transitional boundary layer subject to high (initially 9%) free-stream turbulence, strong acceleration K=ν/Uw2dUw/dxas high as9×10-6, and strong concave curvature (boundary layer thickness between 2% and 5% of the wall radius of curvature). Mean and fluctuating velocity as well as turbulent shear stress are documented and compared to results from equivalent cases on a flat wall and a wall with milder concave curvature. The data show that curvature does have a significant effect, moving the transition location upstream, increasing turbulent transport, and causing skin friction to rise by as much as 40%. Conditional sampling results are presented which show that the curvature effect is present in both the turbulent and non-turbulent zones of the transitional flow.


Sign in / Sign up

Export Citation Format

Share Document