Numerical Study on Air-Reed Instruments With LES

Author(s):  
Kin’ya Takahashi ◽  
Masataka Miyamoto ◽  
Yasunori Ito ◽  
Toshiya Takami ◽  
Taizo Kobayashi ◽  
...  

The acoustic mechanisms of 2D and 3D edge tones and a 2D small air-reed instrument have been studied numerically with compressible Large Eddy Simulation (LES). Sound frequencies of the 2D and 3D edge tones obtained numerically change with the jet velocity well following Brown’s semi-empirical equation, while that of the 2D air-reed instrument behaves in a different manner and obeys the semi-empirical theory, so called Cremer-Ising-Coltman theory. We have also calculated aerodynamic sound sources for the 2D edge tone and the 2D air-reed instrument relying on Ligthhill’s acoustic analogy and have discussed similarities and differences between them. The sound source of the air-reed instrument is more localized around the open mouth compared with that of the edge tone due to the effect of the strong sound field excited in the resonator.

2019 ◽  
Vol 283 ◽  
pp. 09002
Author(s):  
Lulu Liu ◽  
Jin Liu ◽  
Shijin Lyu

A numerical procedure for flow induced cavity noise is established in the paper. The procedure is based on large eddy simulation and FW-H acoustic analogy. The computational scheme is validated by comparing with experimental data. The change of flow induced noise along with cavity length, cavity depth and velocity is studied. A noise control scheme, which includes upright grille and oblique grille, is designed for reducing the flow-induced cavity noise. It turns out that the oblique grille shows superiority in the reduction of cavity noise by modifying the flow structure of the sheat layer.


2016 ◽  
Vol 16 (1-2) ◽  
pp. 78-96 ◽  
Author(s):  
Hyunsun Lee ◽  
Ali Uzun ◽  
M Yousuff Hussaini

An acoustic analogy analysis based on a decomposition of the source term in Lighthill’s equation is discussed in light of a large-eddy simulation of a subsonic turbulent jet exhausting from a baseline round nozzle at Mach number M = 0.9 with Reynolds number Re = 105. The decomposed sub-terms show the nonlinear reciprocal interactions of density, velocity, vorticity, and dilatation fields. To understand the aerodynamic sound generation mechanism, intrinsic links between turbulent flow and emitted acoustic signals are made and applied to the large-eddy simulation data. Cross-correlation functions are used for the links between the far-field sound signals and the sub-terms as well as major flow variables in the jet flow domain. The spatial distributions of cross-correlations are examined to identify the sound source distribution throughout the domain and observe the mutual interactions and cancellations between the decomposed sub-terms. The contributions of sub-terms are also studied in frequency domain.


Author(s):  
V. A. SABELNIKOV ◽  
◽  
V. V. VLASENKO ◽  
S. BAKHNE ◽  
S. S. MOLEV ◽  
...  

Gasdynamics of detonation waves was widely studied within last hundred years - analytically, experimentally, and numerically. The majority of classical studies of the XX century were concentrated on inviscid aspects of detonation structure and propagation. There was a widespread opinion that detonation is such a fast phenomenon that viscous e¨ects should have insigni¦cant in§uence on its propagation. When the era of calculations based on the Reynolds-averaged Navier- Stokes (RANS) and large eddy simulation approaches came into effect, researchers pounced on practical problems with complex geometry and with the interaction of many physical effects. There is only a limited number of works studying the in§uence of viscosity on detonation propagation in supersonic §ows in ducts (i. e., in the presence of boundary layers).


2005 ◽  
Vol 4 (1-2) ◽  
pp. 93-115 ◽  
Author(s):  
Jérôme Boudet ◽  
Nathalie Grosjean ◽  
Marc C. Jacob

A large-eddy simulation is carried out on a rod-airfoil configuration and compared to an accompanying experiment as well as to a RANS computation. A NACA0012 airfoil (chord c = 0.1 m) is located one chord downstream of a circular rod (diameter d = c/10, Red = 48 000). The computed interaction of the resulting sub-critical vortex street with the airfoil is assessed using averaged quantities, aerodynamic spectra and proper orthogonal decomposition (POD) of the instantaneous flow fields. Snapshots of the flow field are compared to particle image velocimetry (PIV) data. The acoustic far field is predicted using the Ffowcs Williams & Hawkings acoustic analogy, and compared to the experimental far field spectra. The large-eddy simulation is shown to accurately represent the deterministic pattern of the vortex shedding that is described by POD modes 1 & 2 and the resulting tonal noise also compares favourably to measurements. Furthermore higher order POD modes that are found in the PIV data are well predicted by the computation. The broadband content of the aerodynamic and the acoustic fields is consequently well predicted over a large range of frequencies ([0 kHz; 10 kHz]).


2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


2008 ◽  
Vol 617 ◽  
pp. 231-253 ◽  
Author(s):  
DANIEL J. BODONY ◽  
SANJIVA K. LELE

An analysis of the sound radiated by three turbulent, high-speed jets is conducted using Lighthill's acoustic analogy (Proc. R. Soc. Lond. A, vol. 211, 1952, p. 564). Computed by large eddy simulation the three jets operate at different conditions: a Mach 0.9 cold jet, a Mach 2.0 cold jet and a Mach 1.0 heated jet. The last two jets have the same jet velocity and differ only by temperature. None of the jets exhibit Mach wave characteristics. For these jets the comparison between the Lighthill-predicted sound and the directly computed sound is favourable for all jets and for the two angles (30° and 90°, measured from the downstream jet axis) considered. The momentum (ρuiuj) and the so-called entropy [p − p∞ − a∞2(ρ − ρ∞)] contributions are examined in the acoustic far field. It is found that significant phase cancellation exists between the momentum and entropy components. It is observed that for high-speed jets one cannot consider ρuiuj and (p′ − a∞2ρ′)δij as independent sources. In particular the ρ′ūxūx component of ρuiuj is strongly coupled with the entropy term as a consequence of compressibility and the high jet velocity and not because of a linear sound-generation mechanism. Further, in more usefully decoupling the momentum and entropic contributions, the decomposition of Tij due to Lilley (Tech. Rep. AGARD CP-131 1974) is preferred. Connections are made between the present results and the quieting of high-speed jets with heating.


Author(s):  
Christian Klewer ◽  
Jens Kuehne ◽  
Johannes Janicka ◽  
Oliver Kornow

Many technical combustion devices are susceptible to thermoacoustic instabilities. In this work, the noise emission by a turbulent jet flame is analyzed by means of a hybrid LES/CAA (Large Eddy Simulation/Computational Aero Acoustics) approach as a first step towards a numerical investigation of combustion instability. The hybrid LES/CAA approach is based on a LES of the reactive flow utilizing a low Mach number formulation. Within the CAA part of the simulations, linearized Euler equations (LEE) are solved. A simplified formulation to describe the thermoacoustic sound sources is extracted from the reactive LES. For the present study, the CFD code FASTEST is coupled with the aeroacoustic simulation tool PIANO. The two solvers are combined to a single tool for the description of the acoustics of reacting flows. Both codes make use of geometry flexible grids enabling the simulation of complex geometries commonly used within technical combustion systems.


Sign in / Sign up

Export Citation Format

Share Document