Effect of Tee and Valve on the Flow Measurement Accuracy for Turbulent Pipe Flow With Flow Conditioner

Author(s):  
Boualem Laribi ◽  
Nahla Bouricha

This work describes the effect of a Tee and a Valve on the flow measurement accuracy and the performances of the E´toile flow straightener described by the standard ISO 5167 to produce the fully developed pipe flow with these disturbances. Simulation is carried out for an air flow in 100mm pipe diameter with a Reynolds number between 104 and 106. The code used for this work is Fluent V6.3, where the Navier-Stokes equations are solved by the finite volumes method with K-ε model like turbulent model. The results show that for the disturbance valve 50% closed, the length of establishment seems to be reached at 25D downstream the E´toile where the flow gyration angle is reduced practically to zero value. But for the Tee disturbance the results show that the flow needs more than 25D to reach the profiles requested by the standards. An experimental study is essential to validate these results for choosing a standard disturbance which will be examined with conditioners quoted in standard 5167 and thereafter the development of a new flow conditioner.

2017 ◽  
Vol 833 ◽  
pp. 274-301 ◽  
Author(s):  
N. B. Budanur ◽  
K. Y. Short ◽  
M. Farazmand ◽  
A. P. Willis ◽  
P. Cvitanović

The chaotic dynamics of low-dimensional systems, such as Lorenz or Rössler flows, is guided by the infinity of periodic orbits embedded in their strange attractors. Whether this is also the case for the infinite-dimensional dynamics of Navier–Stokes equations has long been speculated, and is a topic of ongoing study. Periodic and relative periodic solutions have been shown to be involved in transitions to turbulence. Their relevance to turbulent dynamics – specifically, whether periodic orbits play the same role in high-dimensional nonlinear systems like the Navier–Stokes equations as they do in lower-dimensional systems – is the focus of the present investigation. We perform here a detailed study of pipe flow relative periodic orbits with energies and mean dissipations close to turbulent values. We outline several approaches to reduction of the translational symmetry of the system. We study pipe flow in a minimal computational cell at $Re=2500$, and report a library of invariant solutions found with the aid of the method of slices. Detailed study of the unstable manifolds of a sample of these solutions is consistent with the picture that relative periodic orbits are embedded in the chaotic saddle and that they guide the turbulent dynamics.


Author(s):  
Boualem Laribi ◽  
Abdellaziz Ait Amrane ◽  
Abdellah Hadj-Abdellah

Several plates are described in the standard like a flow conditioners. A numerical simulation is done to study the development of the turbulent flow with the presence of four perforated plates. Three of the perforated plates are described in the standard ISO 5167 namely ZANKER, NOVA and NEL plates. The fourth one is a new design and proposed plate. The main goal is a comparative simulation of the four perforated plates to produce the fully developed pipe flow which is a prerequisite for flow measurement accuracy. The flow is analysed in a circular pipe of 100mm diameter. The disturber used for the simulation is a 90° double bend in two perpendicular planes. The geometry of the perforated plates is different with four types of perforations at different diameters. The flow is insured by air at a Reynolds number of 2.5×105. The numerical analysis is conducted by the CFD code Fluent which is based on the resolution of the Navier-Stokes equations with k-ε like turbulence model. The parameter discussed in this study is the velocity. The results show the effectiveness of perforated plates to obtain the fully developed pipe flow at length z/D=20 downstream the disturbers. Downstream this station the contour seems to reach the fully developed pipe flow like at station z/D=100 where the flow is supposed fully developed, and don’t exhibit any instabilities of the velocity contour. Contrary, in the stations upstream we found instability of the flow structure. From some stations we show how much the turbulent mixing downstream the perforated plates is important to reach the fully developed pipe flow. The effectiveness of CFD code Fluent to predict flow development in different installations is done where good predictions are presented.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


2010 ◽  
Vol 297-301 ◽  
pp. 924-929
Author(s):  
Inès Bhouri Baouab ◽  
Nejla Mahjoub Said ◽  
Hatem Mhiri ◽  
Georges Le Palec ◽  
Philippe Bournot

The present work consists in a numerical examination of the dispersion of pollutants discharged from a bent chimney and crossing twin similar cubic obstacles placed in the lee side of the source. The resulting flow is assumed to be steady, three-dimensional and turbulent. Its modelling is based upon the resolution of the Navier Stokes equations by means of the finite volume method together with the RSM (Reynolds Stress Model) turbulent model. This examination aims essentially at detailing the wind flow perturbations, the recirculation and turbulence generated by the presence of the twin cubic obstacles placed tandem at different spacing distances (gaps): W = 4 h, W = 2 h and W = 1 h where W is the distance separating both buildings.


1976 ◽  
Vol 73 (1) ◽  
pp. 153-164 ◽  
Author(s):  
P.-A. Mackrodt

The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with superimposed rigid rotation against small three-dimensional disturbances is examined at finite and infinite axial Reynolds numbers. The neutral curve, which is obtained by numerical solution of the system of perturbation equations (derived from the Navier-Stokes equations), has been confirmed for finite axial Reynolds numbers by a few simple experiments. The results suggest that, at high axial Reynolds numbers, the amount of rotation required for destabilization could be small enough to have escaped notice in experiments on the transition to turbulence in (nominally) non-rotating pipe flow.


2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


2021 ◽  
Vol 8 (3) ◽  
pp. 418-424
Author(s):  
Syed Fazuruddin ◽  
Seelam Sreekanth ◽  
G. Sankara Sekhar Raju

Incompressible 2-D Navier-stokes equations for various values of Reynolds number with and without partial slip conditions are studied numerically. The Lid-Driven cavity (LDC) with uniform driven lid problem is employed with vorticity - Stream function (VSF) approach. The uniform mesh grid is used in finite difference approximation for solving the governing Navier-stokes equations and developed MATLAB code. The numerical method is validated with benchmark results. The present work is focused on the analysis of lid driven cavity flow of incompressible fluid with partial slip conditions (imposed on side walls of the cavity). The fluid flow patterns are studied with wide range of Reynolds number and slip parameters.


1998 ◽  
Vol 120 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Peter Gerlinger ◽  
Dieter Bru¨ggemann

A multigrid method for convergence acceleration is used for solving coupled fluid and turbulence transport equations. For turbulence closure a low-Reynolds-number q-ω turbulence model is employed, which requires very fine grids in the near wall regions. Due to the use of fine grids, convergence of most iterative solvers slows down, making the use of multigrid techniques especially attractive. However, special care has to be taken on the strong nonlinear turbulent source terms during restriction from fine to coarse grids. Due to the hyperbolic character of the governing equations in supersonic flows and the occurrence of shock waves, modifications to standard multigrid techniques are necessary. A simple and effective method is presented that enables the multigrid scheme to converge. A strong reduction in the required number of multigrid cycles and work units is achieved for different test cases, including a Mack 2 flow over a backward facing step.


Sign in / Sign up

Export Citation Format

Share Document