A Computer-Aided Fixture Design System With Process Planning Integration for Prismatic Parts Manufactured on CNC Machining Centers

Author(s):  
S. Prombanpong ◽  
R. L. Lewis ◽  
A. B. Bishop

Abstract Jigs and fixtures are indispensable tools in various manufacturing processes. These processes include metal removal, assembly, welding, and inspection processes. Not only do jigs and fixtures facilitate the operations, but also provide quick loading/unloading, proper and consistent supporting and locating of a workpiece. As a result, the workpiece can be manufactured economically in proportion to the volume of production. With the advent of computer aided design and computer aided manufacturing together with an increasing power of both computer hardware and software, computerized fixture design systems become feasible and more sophisticated. The current computerized fixture design systems are developed utilizing several approaches ranging from simple interactive placement of fixture components to sophisticated generative systems. However, one of the common drawbacks of these systems is a lack of process planning integration in the fixture design considerations. As a result, the contradiction between fixture design generated by the computerized fixture design system and a process plan generated by a process planner or by computer aided process planning software always occurs. In other words, the fixture set-ups and workpiece orientation are not congruent to the process plan. This paper serves to discuss a solution to the problem mentioned above. A mathematical model was developed to integrate process planning in fixture design considerations. An optimized fixture design system will be presented and discussed. Examples of tested cases are also presented.

2012 ◽  
Vol 503-504 ◽  
pp. 182-185
Author(s):  
Li Na Yang

Modern clothing products have diverse styles changing rapidly and complex processing techniques. They are greatly affected by artificial factor and the equipment conditions are differential. In consideration of these characteristics of the products,Based on the design of the clothing manufacturing craft, this thesis develops a generation method of clothing manufacturing process diagram based on interaction to search for the technical method of accelerating the automatic integrated system progress of the clothing manufacturing craft. Since clothing manufacturing process diagram is an important element of clothing process planning, the generation of process diagram is indispensable in the craft design software. CAPP (Computer Aided Process Planning) refers to the decision of the industrial clothing processing craft by clothing parts making use of the functions of numerical calculation, logic and reasoning and etc. of the computer and with the aid of computer hardware and software technology and support environment [1].


2008 ◽  
Vol 392-394 ◽  
pp. 177-183
Author(s):  
L. Wang ◽  
Guo Fu Yin ◽  
L. Xu

Management of fixture design knowledge is vital for improving product quality and reducing product lead time, but there is no efficient and effective mechanism in current computer-aided fixture design systems to integrate fixture design process, to share design resource as well as acquisition and reuse knowledge. Ontology is increasingly seen as a key technology for enabling semantics-driven knowledge processing. On the background of a architecture of fixture design system based on knowledge introduced in the paper, we presented and expatiated a fixture design knowledge acquisition and reuse technology based on ontology, which embeds ontology in current computer-aided fixture design based on knowledge. Finally, the related case study was given.


Author(s):  
Xiangyu Zhou ◽  
Junqi Yan ◽  
Yi Jin ◽  
Dengzhe Ma ◽  
Zhi-Kui Ling

Abstract Process Planning of a product determines the process activities during its manufacturing process. Transformation of the product from design to its final form by process planning is controlled by its manufacturing environment. In this paper, the systematic representation of a manufacturing environment and a hierarchical data model to represent a process plan is studied and introduced for the flexibility of the Computer Aided Process Planning (CAPP) system and for the integration purpose. An event-driven architecture for the design of general CAPP systems is established based on these models. A CAPP system (U-CAPP) developed by the authors based on these concepts is briefly described.


Author(s):  
B Surendra Babu ◽  
P Madar Valli ◽  
A V V Anil Kumar ◽  
D N Rao

Fixturing is the most commonly used manufacturing constraint in setup planning. The computer-aided fixture design technique is being rapidly developed to reduce the lead-time involved in manufacturing planning. An automated fixture configuration design system has been developed to select modular fixture components automatically and place them in position with satisfactory assembly relationships. In this paper, an automated fixture generation system for prismatic components is presented. Sequential steps for automatic fixture layout planning for machining setups, focusing on determining the most suitable locating and clamping positions in accordance with the 3-2-1 configuration, considering geometrical and dimensional constraints are presented. A software has been developed which takes two-dimensional-manufacturing drawings of the prismatic components as input and generates fixture design automatically. The modularity concept is incorporated in the developed software application and enables locating positions to be as wide apart as possible. The clamping positions are obtained directly opposite to the respective locators as far as possible. The software is tested successfully with numerous examples of prismatic parts involving similar design characteristics.


2018 ◽  
Vol 24 (6) ◽  
pp. 988-1002 ◽  
Author(s):  
Osama Abdulhameed ◽  
Abdurahman Mushabab Al-Ahmari ◽  
Wadea Ameen ◽  
Syed Hammad Mian

Purpose Hybrid manufacturing technologies combining individual processes can be recognized as one of the most cogent developments in recent times. As a result of integrating additive, subtractive and inspection processes within a single system, the relative benefits of each process can be exploited. This collaboration uses the strength of the individual processes, while decreasing the shortcomings and broadening the application areas. Notwithstanding its numerous advantages, the implementation of hybrid technology is typically affected by the limited process planning methods. The process planning methods proficient at effectively using manufacturing sources for hybridization are notably restrictive. Hence, this paper aims to propose a computer-aided process planning system for hybrid additive, subtractive and inspection processes. A dynamic process plan has been developed, wherein an online process control with intelligent and autonomous characteristics, as well as the feedback from the inspection, is utilized. Design/methodology/approach In this research, a computer-aided process planning system for hybrid additive, subtractive and inspection process has been proposed. A framework based on the integration of three phases has been designed and implemented. The first phase has been developed for the generation of alternative plans or different scenarios depending on machining parameters, the amount of material to be added and removed in additive and subtractive manufacturing, etc. The primary objective in this phase has been to conduct set-up planning, process selection, process sequencing, selection of machine parameters, etc. The second phase is aimed at the identification of the optimum scenario or plan. Findings To accomplish this goal, economic models for additive and subtractive manufacturing were used. The objective of the third phase was to generate a dynamic process plan depending on the inspection feedback. For this purpose, a multi-agent system has been used. The multi-agent system has been used to achieve intelligence and autonomy of different phases. Practical implications A case study has been developed to test and validate the proposed algorithm and establish the performance of the proposed system. Originality/value The major contribution of this work is the novel dynamic computer-aided process planning system for the hybrid process. This hybrid process is not limited by the shortcomings of the constituent processes in terms of tool accessibility and support volume. It has been established that the hybrid process together with an appropriate computer-aided process plan provides an effective solution to accurately fabricate a variety of complex parts.


Author(s):  
Dharmaraj Veeramani ◽  
Andreas H. Stinnes

Abstract This paper addresses the problem of process plan generation and optimization for dual-spindle/dual-turret CNC mill-turn centers (commonly referred to as four-axis turning centers) that are capable of both parallel and simultaneous machining modes. The number of alternative process plans for machining a given workpiece on this class of machines can be large, and the process plan optimization problem can, therefore, be complex. Due to the lack of a computer-aided process plan generation and optimization system, these highly flexible machines are being used in industry today as dedicated, mass-production machines. In this paper, we present research (being conducted in close cooperation with industry) on the development of a computer-aided process planning system for four-axis turning centers. In particular, we describe the representation schemes and Tabu Search based strategy for process plan generation and optimization, and present results demonstrating the effectiveness of this approach.


Author(s):  
C. C. Hayes

Abstract This paper describes CHAMP, a conceptual architecture designed to support the task of passing information from computer-aided design systems to computer-aided process planning systems.1 Current integration systems are lacking in the flexibility of both their information-exchange mechanisms and in their control structures. The result is a sacrifice in the efficiency of solutions produced. The proposed architecture is based on models of human process planning, and aims to improve the effectiveness of CAD/CAPP integration by providing more flexible communications and control structures through shared blackboards, and by providing a mechanism for reasoning about intermediate solution states. The architecture is intended to summarize the current understanding of the CAD/CAPP integration task and to elucidate areas where further research is required.


2014 ◽  
Vol 598 ◽  
pp. 591-594 ◽  
Author(s):  
Li Yan Zhang

ISO 14649, known as STEP-NC, is new model of data transfer between CAD/CAM systems and CNC machines. In this paper, the modeling based on machining feature is proposed. The machining feature comes from the manufacturing process considering the restriction of machining technology and machining resource. Then the framework for computer aided process planning is presented, where the algorithms of operation planning is studied. The practical example has been provided and results indicate that machining feature based model can integrate with CAPP and STEP-NC seamlessly.


Sign in / Sign up

Export Citation Format

Share Document