Tooth Contact and 3-D Stress Analysis of Involute Helical Gears

Author(s):  
M. A. Sahir Arikan ◽  
Mustafa Tamar

Abstract An involute helical gear tooth is modelled by using helical gear geometry and a solid modelling package, and this model is used to determine the load distribution on contact lines of mating teeth, and to make the stress analysis by using three-dimensional tetrahedron finite elements with four nodes. Tooth contact analysis is made by using the theory of gearing. Geometry of the cutting tool is used to determine the surface equations of the pinion and the gear in their own coordinate systems, then these equations are transformed to a fixed coordinate system to make the tooth contact analysis and to find the coordinates of contact points. Found contact point coordinates are then transformed back to the original coordinate systems and contact lines on helical gear teeth are formed. Results of this analysis is used to determine the application points and directions of the forces acting on the tooth. Then the stiffnesses of meshing teeth and the load distributions on contact lines are found, which are then used for stress analysis.

Author(s):  
Li-Chi Chao ◽  
Chung-Biau Tsay

The spherical gear is a new type of gear proposed by Mitome et al. [1]. Different from that of the conventional spur or helical gear sets, the spherical gear set can allow variable shaft angles and large axial misalignments without gear interference during the gear drive meshing [1, 2]. Geometrically, the spherical gear has two types of gear tooth profiles, the concave tooth and convex tooth. In practical transmission applications, the contact situation of a spherical gear set is very complex. To obtain a more realistic simulation result, the loaded tooth contact analysis (LTCA) has been performed by employing the finite element method (FEM). According to the derived mathematical model of spherical gear tooth surfaces, an automatic meshes generation program for three-dimensional spherical gears has been developed. Beside, tooth contact analysis (TCA) of spherical gears has been performed to simulate the contact points of the spherical gear set. Furthermore, the contact stress contours of spherical gear tooth surfaces and bending stress of tooth roots have been investigated by giving the design parameters, material properties, loadings and boundary conditions of spherical gears.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Wei-Shiang Wang ◽  
Zhang-Hua Fong

This paper proposes a new type of double-crowned helical gear that can be continuously cut on a modern Cartesian-type hypoid generator with two face-hobbing head cutters and circular-arc cutter blades. The gear tooth flank is double crowned with a cycloidal curve in the longitudinal direction and a circular arc in the profile direction. To gauge the sensitivity of the transmission errors and contact patterns resulting from various assembly errors, this paper applies a tooth contact analysis technique and presents several numerical examples that show the benefit of the proposed double-crowned helical gear set. In contrast to a conventional helical involute gear, the tooth bearing and transmission error of the proposed gear set are both controllable and insensitive to gear-set assembly error.


Author(s):  
Layue Zhao ◽  
Robert C Frazer ◽  
Brian Shaw

With increasing demand for high speed and high power density gear applications, the need to optimise gears for minimum stress, noise and vibration becomes increasingly important. ISO 6336 contact and bending stress analysis are used to determine the surface load capacity and tooth bending strength but dates back to 1956 and although it is constantly being updated, a review of its performance is sensible. Methods to optimise gear performance include the selection of helix angle and tooth depth to optimise overlap ratio and transverse contact ratio and thus the performance of ISO 6336 and tooth contact analysis methods requires confirmation. This paper reviews the contact and bending stress predicted with four involute gear geometries and proposes recommendations for stress calculations, including a modification to contact ratio factor Zɛ which is used to predict contact stress and revisions to form factor YF and helix angle factor Yβ which are cited to evaluate bending stress. The results suggest that there are some significant deviations in predicted bending and contact stress values between proposal methods and original ISO standard. However, before the ISO standard is changed, the paper recommends that allowable stress numbers published in ISO 6336-5 are reviewed because the mechanisms that initiate bending and contact fatigue have also changed and these require updating.


2013 ◽  
Vol 372 ◽  
pp. 543-546
Author(s):  
Xiao Fang Yang ◽  
Zong De Fang ◽  
Yong Zhen Zhang ◽  
Yuan Fei Han

According to the principle of tri-branching, a mechanism structural model was developed to analyze the helical gear transmission system. On the base of loaded tooth contact analysis (LTCA), the load transmission error of each gear stage is simulated at the any engagement position, and the fitting curves of the torsion mesh stiffness are obtained, which can improve the numerical precision. The research results can be applied to analyze the actual application of tri-branching transmission system and provide a firm foundation for study the power-split and load-sharing characteristics.


2002 ◽  
Vol 37 (7) ◽  
pp. 685-691 ◽  
Author(s):  
Shuren Wang ◽  
Dongan Zhan ◽  
Hua Liu ◽  
Shuyu Wang

2004 ◽  
Vol 127 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Vilmos Simon

A method for computer aided loaded tooth contact analysis in different types of cylindrical worm gears is proposed. The method covers both cases—that of the theoretical line and point contact. The geometry and kinematics of a worm gear pair based on the generation of worm gear teeth by a hob is presented. The full loaded tooth contact analysis of such a gear pair is performed. A computer program based on the theoretical background presented has been developed. By using this program the path of contact, the potential contact lines, the separations of mating surfaces along these contact lines, the load distribution and transmission errors for different types of modified and nonmodified worm gear pairs are calculated and graphically presented. The influence of gear tooth modifications on tooth contact is investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document