Parametric Surface Intersections for Geometric Modeling

Author(s):  
J.-M. Chen ◽  
Yu Wang ◽  
E. L. Guroz ◽  
Fritz B. Prinz

Abstract A surface-surface intersection algorithm is an important element in the development of a geometric modeler. This paper presents a new algorithm for calculating the intersection curves of two parametric surfaces. Combining the merits of subdivision and global exploration methods, this algorithm is efficient and robust in dealing with the issues related to small loops and singularities. This algorithm is demonstrated with examples of non-uniform rational B-spline surfaces.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
C. H. Garcia-Capulin ◽  
F. J. Cuevas ◽  
G. Trejo-Caballero ◽  
H. Rostro-Gonzalez

B-spline surface approximation has been widely used in many applications such as CAD, medical imaging, reverse engineering, and geometric modeling. Given a data set of measures, the surface approximation aims to find a surface that optimally fits the data set. One of the main problems associated with surface approximation by B-splines is the adequate selection of the number and location of the knots, as well as the solution of the system of equations generated by tensor product spline surfaces. In this work, we use a hierarchical genetic algorithm (HGA) to tackle the B-spline surface approximation of smooth explicit data. The proposed approach is based on a novel hierarchical gene structure for the chromosomal representation, which allows us to determine the number and location of the knots for each surface dimension and the B-spline coefficients simultaneously. The method is fully based on genetic algorithms and does not require subjective parameters like smooth factor or knot locations to perform the solution. In order to validate the efficacy of the proposed approach, simulation results from several tests on smooth surfaces and comparison with a successful method have been included.


1988 ◽  
Vol 110 (3) ◽  
pp. 287-294 ◽  
Author(s):  
N. M. Patrikalakis ◽  
P. V. Prakash

This paper addresses the representation of plates within the framework of the Boundary Representation method in a Solid Modeling environment. Plates are defined as the volume bounded by a progenitor surface, its offset surface and other, possibly ruled surfaces for the sides. Offset surfaces of polynomial parametric surfaces cannot be represented exactly within the same class of functions describing the progenitor surface. Therefore, if the offset surface is to be represented in the same form as the progenitor surface, approximation is required. A method of approximation relevant to non-uniform rational parametric B-spline surfaces is described. The method employs the properties of the control polyhedron and a recently developed subdivision algorithm to satisfy a certain accuracy criterion. Representative examples are given which illustrate the efficiency and robustness of the proposed method.


2018 ◽  
Vol 30 (12) ◽  
pp. 2193
Author(s):  
Fei Wang ◽  
Falai Chen ◽  
Weihua Tong
Keyword(s):  
B Spline ◽  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1304
Author(s):  
Wenchao Wu ◽  
Yongguang Hu ◽  
Yongzong Lu

Plant leaf 3D architecture changes during growth and shows sensitive response to environmental stresses. In recent years, acquisition and segmentation methods of leaf point cloud developed rapidly, but 3D modelling leaf point clouds has not gained much attention. In this study, a parametric surface modelling method was proposed for accurately fitting tea leaf point cloud. Firstly, principal component analysis was utilized to adjust posture and position of the point cloud. Then, the point cloud was sliced into multiple sections, and some sections were selected to generate a point set to be fitted (PSF). Finally, the PSF was fitted into non-uniform rational B-spline (NURBS) surface. Two methods were developed to generate the ordered PSF and the unordered PSF, respectively. The PSF was firstly fitted as B-spline surface and then was transformed to NURBS form by minimizing fitting error, which was solved by particle swarm optimization (PSO). The fitting error was specified as weighted sum of the root-mean-square error (RMSE) and the maximum value (MV) of Euclidean distances between fitted surface and a subset of the point cloud. The results showed that the proposed modelling method could be used even if the point cloud is largely simplified (RMSE < 1 mm, MV < 2 mm, without performing PSO). Future studies will model wider range of leaves as well as incomplete point cloud.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Esra Betul Koc Ozturk

With the help of the Frenet frame of a given pseudo null curve, a family of parametric surfaces is expressed as a linear combination of this frame. The necessary and sufficient conditions are examined for that curve to be an isoparametric and asymptotic on the parametric surface. It is shown that there is not any cylindrical and developable ruled surface as a parametric surface. Also, some interesting examples are illustrated about these surfaces.


Author(s):  
Joanna M. Brown ◽  
Malcolm I. G. Bloor ◽  
M. Susan Bloor ◽  
Michael J. Wilson

Abstract A PDE surface is generated by solving partial differential equations subject to boundary conditions. To obtain an approximation of the PDE surface in the form of a B-spline surface the finite element method, with the basis formed from B-spline basis functions, can be used to solve the equations. The procedure is simplest when uniform B-splines are used, but it is also feasible, and in some cases desirable, to use non-uniform B-splines. It will also be shown that it is possible, if required, to modify the non-uniform B-spline approximation in a variety of ways, using the properties of B-spline surfaces.


Author(s):  
Dennis Mosbach ◽  
Katja Schladitz ◽  
Bernd Hamann ◽  
Hans Hagen

Abstract We present a method for approximating surface data of arbitrary topology by a model of smoothly connected B-spline surfaces. Most of the existing solutions for this problem use constructions with limited degrees of freedom or they address smoothness between surfaces in a post-processing step, often leading to undesirable surface behavior in proximity of the boundaries. Our contribution is the design of a local method for the approximation process. We compute a smooth B-spline surface approximation without imposing restrictions on the topology of a quadrilateral base mesh defining the individual B-spline surfaces, the used B-spline knot vectors, or the number of B-spline control points. Exact tangent plane continuity can generally not be achieved for a set of B-spline surfaces for an arbitrary underlying quadrilateral base mesh. Our method generates a set of B-spline surfaces that lead to a nearly tangent plane continuous surface approximation and is watertight, i.e., continuous. The presented examples demonstrate that we can generate B-spline approximations with differences of normal vectors along shared boundary curves of less than one degree. Our approach can also be adapted to locally utilize other approximation methods leading to higher orders of continuity.


Author(s):  
Yuan Yuan ◽  
Shiyu Zhou

B-spline surfaces are widely used in engineering practices as a flexible and efficient mathematical model for product design, analysis, and assessment. In this paper, we propose a new sequential B-spline surface construction procedure using multiresolution measurements. At each iterative step of the proposed procedure, we first update knots vectors based on bias and variance decomposition of the fitting error and then incorporate new data into the current surface approximation to fit the control points using Kalman filtering technique. The asymptotical convergence property of the proposed procedure is proved under the framework of sieves method. Using numerical case studies, the effectiveness of the method under finite sample is tested and demonstrated.


Sign in / Sign up

Export Citation Format

Share Document