Experimental Investigation of Isolated and Simultaneous Internal Resonances in Suspended Cables

Author(s):  
Christopher L. Lee ◽  
Noel C. Perkins

Abstract The near resonant response of suspended elastic cables driven by harmonic, planar excitation is investigated experimentally. Measurements of large amplitude cable motions confirm previous theoretical predictions of fundamental classes of internally-resonant responses. For particular magnitudes of equilibrium curvature, strong modal interactions arise through isolated (two-mode) or simultaneous (three-mode) internal resonances. Four qualitatively different periodic responses are observed: 1) pure planar response, 2) 2:1 internally resonant non-planar response 3) 1:1 internally resonant non-planar response, and 4) simultaneous, 2:2:1 internally resonant non-planar response. Quasi-periodic responses are also observed.

1995 ◽  
Vol 117 (4) ◽  
pp. 385-391 ◽  
Author(s):  
C. L. Lee ◽  
N. C. Perkins

The near resonant response of suspended elastic cables driven by harmonic, planar excitation is investigated experimentally. Measurements of large amplitude cable motions confirm previous theoretical predictions of fundamental classes of internally-resonant responses. For particular magnitudes of equilibrium curvature, strong modal interactions arise through isolated (two-mode) or simultaneous (three-mode) internal resonances. Four qualitatively different periodic responses are observed: (1) pure planar response, (2) 2:1 internally resonant nonplanar response, (3) 1:1 internally resonant nonplanar response, and (4) simultaneous, 2:2:1 internally resonant nonplanar response. Quasiperiodic responses are also observed.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Lianhua Wang ◽  
Yueyu Zhao ◽  
Giuseppe Rega

The large amplitude vibration and modal interactions of shallow suspended cable with three-to-three-to-one internal resonances are investigated. The quasistatic assumption and direct approach are used to obtain the condensed suspended cable model and the corresponding modulation equations for the case of primary resonance of the third symmetric in-plane or out-of-plane mode. The equilibrium, periodic, and chaotic solutions of the modulation equations are studied. Moreover, the nonplanar motion and symmetric character of out-of-plane vibration of the shallow suspended cables are investigated by means of numerical simulations. Finally, the role played by the quasistatic assumption, internal resonance, and static configuration in disrupting the symmetry of the out-of-plane vibration is discussed.


2000 ◽  
Vol 75 (4) ◽  
pp. 429-451 ◽  
Author(s):  
Ronald R. King ◽  
Rachel Schwartz

This paper reports the results of an experiment designed to investigate how legal regimes affect social welfare. We investigate four legal regimes, each consisting of a liability rule (strict or negligence) and a damage measure (out-of-pocket or independent-of-investment). The results of the experiment are for the most part consistent with the qualitative predictions of Schwartz's (1997) model; however, subjects' actual choices deviate from the point predictions of the model. We explore whether these deviations arise because: (1) subjects form faulty anticipations of their counterparts' actions and/or (2) subjects do not choose the optimal responses given their anticipations. We find that subjects behave differently under the four regimes in terms of anticipation errors and departures from best responses. For example, subjects playing the role of auditors anticipate investments most accurately under the regime with strict liability combined with out-of-pocket damages, but are least likely to choose the optimal response given their anticipations. This finding implies that noneconomic factors likely play a role in determining subjects' choices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ata Keşkekler ◽  
Oriel Shoshani ◽  
Martin Lee ◽  
Herre S. J. van der Zant ◽  
Peter G. Steeneken ◽  
...  

AbstractMechanical sources of nonlinear damping play a central role in modern physics, from solid-state physics to thermodynamics. The microscopic theory of mechanical dissipation suggests that nonlinear damping of a resonant mode can be strongly enhanced when it is coupled to a vibration mode that is close to twice its resonance frequency. To date, no experimental evidence of this enhancement has been realized. In this letter, we experimentally show that nanoresonators driven into parametric-direct internal resonance provide supporting evidence for the microscopic theory of nonlinear dissipation. By regulating the drive level, we tune the parametric resonance of a graphene nanodrum over a range of 40–70 MHz to reach successive two-to-one internal resonances, leading to a nearly two-fold increase of the nonlinear damping. Our study opens up a route towards utilizing modal interactions and parametric resonance to realize resonators with engineered nonlinear dissipation over wide frequency range.


2004 ◽  
Vol 25 (2) ◽  
pp. 153-158
Author(s):  
Md. Anwar Hossain ◽  
Masaaki Kawahashi ◽  
Tomoyoshi Nagakita ◽  
Hiroyuki Hirahara

1987 ◽  
Vol 40 (2) ◽  
pp. 157 ◽  
Author(s):  
IR Jones ◽  
MDE Turley ◽  
JE Wedding ◽  
G Durance ◽  
GR Hogg ◽  
...  

A rotamak device is described in which compact torus plasmas are generated using relatively low RF input powers (~ a few kW). Compact torus configurations are generated in both argon and hydrogen plasmas and are sustained for ~ 9 ms. These configurations appear to be grossly stable and show no tendency to disrupt even when subjected to large amplitude forced oscillations. A configuration incorporating a toroidal field is also investigated.


1999 ◽  
Vol 227 (1) ◽  
pp. 1-28 ◽  
Author(s):  
V.N. PILIPCHUK ◽  
R.A. IBRAHIM

Sign in / Sign up

Export Citation Format

Share Document