Modal Testing and Parameter Identification of Active Magnetic Bearing System

Author(s):  
Chong-Won Lee ◽  
Young-Ho Ha ◽  
Cheol-Soon Kim ◽  
Chee-Young Joh

Abstract Complex modal testing is employed for parameter identification of a four-axis active magnetic bearing system. In the test, magnetic bearings are used as exciters while the system is in operation. The experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters.

1996 ◽  
Vol 118 (3) ◽  
pp. 586-592 ◽  
Author(s):  
Chong-Won Lee ◽  
Young-Ho Ha ◽  
Chee-Young Joh ◽  
Cheol-Soon Kim

Complex modal testing is employed to obtain the directional frequency responses of a four-axis active magnetic bearing system. In the test, magnetic bearings are used as exciters while the system is in operation. The directional frequency response estimates are then used to effectively identify the parameters of the active magnetic bearing system. Experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters of the system.


1993 ◽  
Vol 20 (5) ◽  
pp. 801-813 ◽  
Author(s):  
Yin Chen ◽  
A. S. J. Swamidas

Strain gauges, along with an accelerometer and a linear variable displacement transducer, were used in the modal testing to detect a crack in a tripod tower platform structure model. The experimental results showed that the frequency response function of the strain gauge located near the crack had the most sensitivity to cracking. It was observed that the amplitude of the strain frequency response function at resonant points had large changes (around 60% when the crack became a through-thickness crack) when the crack grew in size. By monitoring the change of modal parameters, especially the amplitude of the strain frequency response function near the critical area, it would be very easy to detect the damage that occurs in offshore structures. A numerical computation of the frequency response functions using finite element method was also performed and compared with the experimental results. A good consistency between these two sets of results has been found. All the calculations required for the experimental modal parameters and the finite element analysis were carried out using the computer program SDRC-IDEAS. Key words: modal testing, cracking, strain–displacement–acceleration frequency response functions, frequency–damping–amplitude changes.


Author(s):  
Chong-Won Lee ◽  
Kye-Si Kwon

Abstract A quick and easy but comprehensive identification method for asymmetry in an asymmetric rotor is proposed based on complex modal testing method. In this work, it is shown that the reverse directional frequency response function (reverse dFRF), which indicates the degree of asymmetry, can be identified with a simple method requiring only one vibration sensor and one exciter. To clarify physical realization associated with estimation of the reverse dFRF, its relation to the conventional frequency response functions, which are defined by the real input (exciter) and output (vibration sensor), are extensively discussed.


2004 ◽  
Vol 18 (5) ◽  
pp. 1097-1116 ◽  
Author(s):  
B. Cauberghe ◽  
P. Guillaume ◽  
P. Verboven ◽  
S. Vanlanduit ◽  
E. Parloo

2004 ◽  
Vol 11 (5-6) ◽  
pp. 685-692 ◽  
Author(s):  
Jiehua Peng ◽  
Jiashi Tang ◽  
Zili Chen

A new method of identifying parameters of nonlinearly vibrating system in frequency domain is presented in this paper. The problems of parameter identification of the nonlinear dynamic system with nonlinear elastic force or nonlinear damping force are discussed. In the method, the mathematic model of parameter identification is frequency response function. Firstly, by means of perturbation method the frequency response function of weakly nonlinear vibration system is derived. Next, a parameter transformation is made and the frequency response function becomes a linear function of the new parameters. Then, based on this function and with the least square method, physical parameters of the system are identified. Finally, the applicability of the proposed technique is confirmed by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document