Identification of Rotating Asymmetry in Rotating Machines by Using Reverse dFRF

Author(s):  
Chong-Won Lee ◽  
Kye-Si Kwon

Abstract A quick and easy but comprehensive identification method for asymmetry in an asymmetric rotor is proposed based on complex modal testing method. In this work, it is shown that the reverse directional frequency response function (reverse dFRF), which indicates the degree of asymmetry, can be identified with a simple method requiring only one vibration sensor and one exciter. To clarify physical realization associated with estimation of the reverse dFRF, its relation to the conventional frequency response functions, which are defined by the real input (exciter) and output (vibration sensor), are extensively discussed.

Author(s):  
C-W Lee ◽  
K-S Kwon

A quick and easy but comprehensive identification method for rotating asymmetry in rotating machines is proposed, based on the complex modal testing method. In this work it is shown that the reverse directional frequency response function (reverse dFRF), which indicates the degree of asymmetry, can be identified with a simple testing method requiring only a single vibration sensor and a single exciter. To clarify physical realization associated with estimation of the reverse dFRF, its relation to the conventional frequency response functions, which are defined by the real input (excitation) and output (vibration measurement), are discussed extensively.


1993 ◽  
Vol 20 (5) ◽  
pp. 801-813 ◽  
Author(s):  
Yin Chen ◽  
A. S. J. Swamidas

Strain gauges, along with an accelerometer and a linear variable displacement transducer, were used in the modal testing to detect a crack in a tripod tower platform structure model. The experimental results showed that the frequency response function of the strain gauge located near the crack had the most sensitivity to cracking. It was observed that the amplitude of the strain frequency response function at resonant points had large changes (around 60% when the crack became a through-thickness crack) when the crack grew in size. By monitoring the change of modal parameters, especially the amplitude of the strain frequency response function near the critical area, it would be very easy to detect the damage that occurs in offshore structures. A numerical computation of the frequency response functions using finite element method was also performed and compared with the experimental results. A good consistency between these two sets of results has been found. All the calculations required for the experimental modal parameters and the finite element analysis were carried out using the computer program SDRC-IDEAS. Key words: modal testing, cracking, strain–displacement–acceleration frequency response functions, frequency–damping–amplitude changes.


Author(s):  
Seok-Ku Lee ◽  
Chong-Won Lee

Abstract Unidirectional excitation technique is presented for the complex modal testing of asymmetric rotor systems. The theoretical development, which is made strictly in the stationary coordinate system, enables the unidirectional excitation to effectively estimate the directional frequency response functions. It far lessens the testing efforts a numerical example of the dynamically tuned gyroscope (DTG) is treated to demonstrate the practicality of the complex modal testing.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550065 ◽  
Author(s):  
Zafar Abas ◽  
Dong Ho Yang ◽  
Heung Soo Kim ◽  
Moon Kyu Kwak ◽  
Jaehwan Kim

We characterized a vibration sensor made of piezoelectric paper by measuring the frequency response function of an aluminum cantilever that was subjected to impulse loading and random excitation. The dynamic characteristics of the device were measured by recording the transient response of the smart cantilever beam with a pair of electro-active paper (EAPap) and polyvinylidene fluoride (PVDF) sensors located at a 5 mm distance from the clamped end as well as from a second pair of piezoelectric sensors located at a distance of 140 mm. The responses were measured by impacting the cantilever at its tip and at its mid-point. A fast Fourier transform was applied on the time domain data to measure the resonant frequencies of the vibrating structure. Both the EAPap and the PVDF sensors were observed to be very sensitive to varying levels of dynamic strain. The EAPap sensor showed a low strain sensitivity that was found to be desirable due to the inherent piezoelectricity and eco-friendly behavior of the material. The results revealed that the dynamic sensing ability of the EAPap at a low frequency range was quite comparable to that of PVDF when monitoring structural vibrations. The frequency response function was also measured via random excitation, piezoelectricity of the EAPap sensor shows potential for sensing vibrations with a dynamic response.


Author(s):  
Chong-Won Lee ◽  
Young-Ho Ha ◽  
Cheol-Soon Kim ◽  
Chee-Young Joh

Abstract Complex modal testing is employed for parameter identification of a four-axis active magnetic bearing system. In the test, magnetic bearings are used as exciters while the system is in operation. The experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters.


2017 ◽  
Vol 23 (11) ◽  
pp. 1444-1455
Author(s):  
Walter D’Ambrogio ◽  
Annalisa Fregolent

Flexible structural components can be attached to the rest of the structure using different types of joints. For instance, this is the case of solar panels or array antennas for space applications that are joined to the body of the satellite. To predict the dynamic behaviour of such structures under different boundary conditions, such as additional constraints or appended structures, it is possible to start from the frequency response functions in free-free conditions. In this situation, any structure exhibits rigid body modes at zero frequency. To experimentally simulate free-free boundary conditions, flexible supports such as soft springs are typically used: with such arrangement, rigid body modes occur at low non-zero frequencies. Since a flexible structure exhibits the first flexible modes at very low frequencies, rigid body modes and flexible modes become coupled: therefore, experimental frequency response function measurements provide incorrect information about the low frequency dynamics of the free-free structure. To overcome this problem, substructure decoupling can be used, that allows us to identify the dynamics of a substructure (i.e. the free-free structure) after measuring the frequency response functions on the complete structure (i.e. the structure plus the supports) and from a dynamic model of the residual substructure (i.e. the supporting structure). Subsequently, the effect of additional boundary conditions can be predicted using a frequency response function condensation technique. The procedure is tested on a reduced scale model of a space solar panel.


2018 ◽  
Vol 18 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Ulrike Dackermann ◽  
Wade A Smith ◽  
Mehrisadat Makki Alamdari ◽  
Jianchun Li ◽  
Robert B Randall

This article aims at developing a new framework to identify and assess progressive structural damage. The method relies solely on output measurements to establish the frequency response functions of a structure using cepstrum-based operational modal analysis. Two different damage indicative features are constructed using the established frequency response functions. The first damage feature takes the residual frequency response function, defined as the difference in frequency response function between evolving states of the structure, and then reduces its dimension using principle component analysis; while in the second damage indicator, a new feature based on the area under the residual frequency response function curve is proposed. The rationale behind this feature lies in the fact that damage often affects a number of modes of the system, that is, it affects the frequency response function over a wide range of frequencies; as a result, this quantity has higher sensitivity to any structural change by combining all contributions from different frequencies. The obtained feature vectors serve as inputs to a novel multi-stage neural network ensemble designed to assess the severity of damage in the structure. The proposed method is validated using extensive experimental data from a laboratory four-girder timber bridge structure subjected to gradually progressing damage at various locations with different severities. In total, 13 different states of the structure are considered, and it is demonstrated that the new damage feature outperforms the conventional principle component analysis–based feature. The contribution of the work is threefold: first, the application of cepstrum-based operational modal analysis in structural health monitoring is further validated, which has potential for real-life applications where only limited knowledge of the input is available; second, a new damage feature is proposed and its superior performance is demonstrated; and finally, the comprehensive test framework including extensive progressive damage cases validates the proposed technique.


Author(s):  
Chong-Won Lee ◽  
Young-Don Joh

Abstract Various modal testing methods are proposed for the effective use of complex modal testing for rotating machinery, focusing on excitations and measurements. The proposed methods are developed, based on the input/output relationships for complex signals, for the direct or indirect assessment of frequency response and coherence functions between complex inputs and outputs. The proposed testing methods and the classical modal testing method are compared in consideration of required number of frequency response functions (FRFs) and testing efforts.


2001 ◽  
Vol 86 (6) ◽  
pp. 2703-2714 ◽  
Author(s):  
Joseph F. Kabara ◽  
A. B. Bonds

Responses of cat striate cortical cells to a drifting sinusoidal grating were modified by the superimposition of a second, perturbing grating (PG) that did not excite the cell when presented alone. One consequence of the presence of a PG was a shift in the tuning curves. The orientation tuning of all 41 cells exposed to a PG and the spatial frequency tuning of 83% of the 23 cells exposed to a PG showed statistically significant dislocations of both the response function peak and center of mass from their single grating values. As found in earlier reports, the presence of PGs suppressed responsiveness. However, reductions measured at the single grating optimum orientation or spatial frequency were on average 1.3 times greater than the suppression found at the peak of the response function modified by the presence of the PG. Much of the loss in response seen at the single grating optimum is thus a result of a shift in the tuning function rather than outright suppression. On average orientation shifts were repulsive and proportional (∼0.10 deg/deg) to the angle between the perturbing stimulus and the optimum single grating orientation. Shifts in the spatial frequency response function were both attractive and repulsive, resulting in an overall average of zero. For both simple and complex cells, PGs generally broadened orientation response function bandwidths. Similarly, complex cell spatial frequency response function bandwidths broadened. Simple cell spatial frequency response functions usually did not change, and those that did broadened only 4% on average. These data support the hypothesis that additional sinusoidal components in compound stimuli retune cells' response functions for orientation and spatial frequency.


Sign in / Sign up

Export Citation Format

Share Document