An Optimal Design Method for Rubber Dynamic Vibration Absorber

Author(s):  
Yoshihiro Satoh ◽  
Hiroshi Misawa

Abstract A dynamic vibration absorber can be used for suppression of excessive amplitude of structures at the resonance. This paper deals with an optimal design method for the dynamic vibration absorber which consists of a mass and a carbon-black filled rubber vulcanizate. First, a system which consists of a main system and the dynamic vibration absorber was analyzed, considering nonlinear dynamic properties possessed by the rubber vulcanizate. Frequency response functions of the system were derived in the form including the rubber geometry and a mass ratio as design parameters. Next, an objective function was composed of the frequency response functions. Minimizing the objective function with respect to the parameters of the rubber geometry for given mass ratio, the optimal values were determined. From the consideration of the results, a new convenient method to determine the optimal values was derived. This method was examined by the experiments. As a result, the validity of the analysis method was verified, and the availability of the present design method for the suppression of vibration was confirmed.

Author(s):  
Michel Auleley ◽  
Olivier Thomas ◽  
Christophe Giraud-Audine ◽  
Hervé Mahé

In this study, we address the reduction of structural vibrations by means of an electromagnetic shunt damper (EMSD) combined with a mechanical dynamic vibration absorber (DVA). Two architectures, that differs in the placement of the EMSD with respect to the DVA, are tested, showing that one of them enhances the vibration control. In parallel, three shunt architecture are tested: a resistive shunt, a resonant conservative shunt and a resonant dissipative shunt. Optimal values of the EMSD and DVA parameters are obtained; then, the performances of all architecture, according to relevant criteria, are estimated and compared to a single DVA or a single EMSD. The case of a conservative DVA, that creates an anti-resonance, is particularly targeted. It is shown that the performances rely on two free parameters only: the mass ratio for the DVA and the electromagnetic coupling factor for the EMSD, thus giving generic abacuses that can be applied to any practical cases. Finally, experiments are proposed and a good agreement with the theoretical results is obtained, thus validating them.


Author(s):  
Bohdan M. Diveyev ◽  
Zinovij A. Stotsko

The main aim of this paper is improved dynamic vibration absorbers design with taking into account complex rotating machines dynamic The is considered for the complex vibroexitated constructions. Methods of decomposition and the numerical schemes synthesis are considered on the basis of new methods of modal methods. Development of of complicated machines and buildings in view of their interaction with system of dynamic vibration absorbers is under discussion.


2019 ◽  
Vol 27 (4) ◽  
pp. 504-515
Author(s):  
Ivan Kernytskyy ◽  
Serhii Baranovych ◽  
Serhii Berezovetskyi ◽  
Bohdan Diveyev ◽  
Orest Horbay ◽  
...  

The main task of this work is to analyze optimal design-system of the booms of boom-sprayers. The discrete-continue models of machines dynamics of such wheeled machines as boom-sprayer with elongated boom element with the attachment of dynamic vibration absorbers are offered. The algorithms for vibration decreasing of boom are received. The new vibroabsorbing elements are proposed. The paper contemplates the provision of dynamic vibration absorbers (DVA) of buffered impact masses and particle type. Such originally designed absorbers reduce vibration selectively in maximum vibration mode, without introducing vibration in other modes. The damping results from the exchange of momentum during impacts among the masses and masses and stops as the structure vibrates. A technique is developed to give the optimal DVA’s as single degree of freedom (SDOF) buffered system. The one-digit values are established not only for the dynamic vibration absorber parameters, but also for mechanical parameter of base structure – boom in connection points of the dynamic vibration absorbers. Finally, present research develops the genetic algorithms for optimal design searching by discrete-continuum DVA’s system – base system modeling.


2018 ◽  
Vol 56 (5) ◽  
Author(s):  
Nguyen Van Khang

The dynamic vibration absorber (DVA) has been widely applied in various technical fields. This paper presents a  procedure for designing the optimal parameters of  a dynamic vibration absorber attached to a damped primary system. The values of the optimal parameters of the DVA obtained by the Taguchi’s method are compared by the results obtained by other methods. The comparison results show the advantages of the procedure presented in this study


2018 ◽  
Vol 14 (1) ◽  
pp. 104-110
Author(s):  
Yong-chao Chen ◽  
Xin-bao Gao ◽  
Min Gao ◽  
Dan Fang

This article describes how one optimal design method is given to the design of missile autopilots. This method profits from an exhaustive method. By this method, the design process of a missile autopilot is simplified, and the design efficiency is improved. In the design process of this method, the performance indexes of autopilot are translated into constraint conditions, and the response speed is translated to an objective function. Thus, the optimal design of missile autopilot is translated into the optimal design of a nonlinear system with multiple constraints. The optimization algorithm is found to be out of controller parameter combinations which can satisfy constrained conditions. Firstly, calculations of the corresponding objective function values. Second, by the extract the optimal combination which has the minimal objective function value.


Author(s):  
Yongpeng Wen ◽  
Qian Sun ◽  
Yu Zou ◽  
Haoming You

Magnetorheological elastomer is a new kind of intelligent material that mainly incorporates micron-sized ferromagnetic particles into a polymer. A dynamic vibration absorber that is based on the controllable shear modulus of magnetorheological elastomer is widely used in vibration systems. In the study, a flexible carbody model with a magnetorheological elastomer dynamic vibration absorber is established. A design method of a semiactive dynamic vibration absorber that is based on magnetorheological elastomer is introduced, and the operational principle of the semiactive dynamic vibration absorber is also discussed. To improve the vibration absorption performance of the magnetorheological elastomer dynamic vibration absorber, via multiple regression analysis, the optimal design frequency expressions for both the rigid vibration and the elastic vibration of the carbody are fitted. Parameter determination for the magnetorheological elastomer dynamic vibration absorber is investigated in detail. Then, the effects on the rigid vibration and the elastic vibration with the magnetorheological elastomer vibration absorber both with the passive vibration absorber and without a vibration absorber are analyzed. Finally, Sperling’s riding index is used to evaluate the feasibility and the performance of the magnetorheological elastomer dynamic vibration absorber in a practical application. The results demonstrate that the vibration of the carbody can be effectively reduced by using the magnetorheological elastomer dynamic vibration absorber instead of the dynamic vibration absorber without the magnetorheological elastomer. The magnetorheological elastomer dynamic vibration absorber that is modified by the optimum frequency provides superior vibration reduction performance and improves the riding quality of the railway vehicle.


Sign in / Sign up

Export Citation Format

Share Document