A Bounded Variation Approach to Inverse Interferometry

Author(s):  
B. G. Fitzpatrick ◽  
S. L. Keeling ◽  
S. G. Rock

Abstract A least squares reconstruction technique is examined for determining flow-field densities from optical data. Nonintrusive optical methods have long been used for flow visualization; however, the goal of this work is to devise mathematical techniques with which optical data can be used for quantitative flow measurement. The ill-posedness of density computation from interferogram measurements is recognized as a serious limitation in direct inversion methods. Here, least squares techniques employing compactness constraints are developed to avoid the difficulties encountered in traditional approaches.

2017 ◽  
Author(s):  
Andreas Kääb ◽  
Bas Altena ◽  
Joseph Mascaro

Abstract. Satellite measurements of coseismic displacements are typically based on Synthetic Aperture Radar (SAR) interferometry or amplitude tracking, or based on optical data such as from Landsat, Sentinel-2, SPOT, ASTER, very-high resolution satellites, or airphotos. Here, we evaluate a new class of optical satellite images for this purpose – data from cubesats. More specific, we investigate the PlanetScope cubesat constellation for horizontal surface displacements by the 14 November 2016 Mw7.8 Kaikoura, New Zealand, earthquake. Single PlanetScope scenes are 2–4 m resolution visible and near-infrared frame images of approximately 20–30 km × 9–15 km in size, acquired in continuous sequence along an orbit of approximately 375–475 km height. From single scenes or mosaics from before and after the earthquake we observe surface displacements of up to almost 10 m and estimate a matching accuracy from PlanetScope data of up to ±0.2 pixels (~ ±0.6 m). This accuracy, the daily revisit anticipated for the PlanetScope constellation for the entire land surface of Earth, and a number of other features, together offer new possibilities for investigating coseismic and other Earth surface displacements and managing related hazards and disasters, and complement existing SAR and optical methods. For comparison and for a better regional overview we also match the coseismic displacements by the 2016 Kaikoura earthquake using Landsat8 and Sentinel-2 data.


Sign in / Sign up

Export Citation Format

Share Document