A Fractional Calculus Perspective of PID Tuning

Author(s):  
Ramiro S. Barbosa ◽  
J. A. Tenreiro Machado ◽  
Isabel M. Ferreira

This paper gives an interpretation of the classical PID controller tuning based on the fractional calculus theory. The PID parameters are calculated according with the specifications of an elementary system whose open-loop transfer function is a fractional order integrator (FOI). The performances of the two systems are compared and illustrated through the frequency and time responses.

2000 ◽  
Vol 33 (20) ◽  
pp. 25-32
Author(s):  
K.G. Arvanitis ◽  
N.A. Sigrimis ◽  
G.D. Pasgianos ◽  
G. Kalogeropoulos

Climate control for livestock building is of considerable significance but it is additionally a difficult and convoluted task. The chickens are mainly affected by the variation of temperature and relative humidity. The arrangement of these parameters is accomplished by selecting proper control techniques. In this paper, an optimized controller for the stabilization of the poultry house system has been designed in order to reduce the heat stress of broilers and to achieve the preservation of chickens’ health and comfort. A hygro-thermal model describing the behavior of the poultry house is decomposed into two single loops based on the theory of the effective open-loop transfer function. Adopting a model reduction technique, the equivalent transfer function of each loop is then designed by developing an independent multi-loop PID controller. The initial stability of the reduced model is assured via the Hermite-Biehler theorem. Then, the Genetic Algorithm is adopted to search the optimal gain values that contribute to the desired indoor climate monitoring. An extensive numerical simulation is tested with original experiments measures to show the effectiveness of the design control and the results are compared to those of the ant colony optimization and Ziegler-Nichols methods.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5945
Author(s):  
Milan Hofreiter

The aim of this study was to present a relay shifting method for relay feedback identification of dynamical systems suitable for PID controller tuning. The proposed technique uses a biased relay to determine frequency response points from a single experiment without any assumptions about a model transfer function. The method is applicable for open-loop stable, unstable, and integration processes, even with a delay, and regardless of whether they are oscillating or non-oscillating. The core of this technique was formed by the so-called relay shifting filter. In this study, the method was applied to a parameter estimation of a second-order time-delayed (SOTD) model that can describe, with acceptable accuracy, the dynamics of most processes (even with a transport delay) near the operating point. Simultaneously, a parameter setting for the PID controller was derived based on the model parameters. The applicability of the proposed method was demonstrated on various simulated processes and tested on real laboratory apparatuses.


Sign in / Sign up

Export Citation Format

Share Document