fractional order integrator
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3148
Author(s):  
Martín Alejandro Valencia-Ponce ◽  
Esteban Tlelo-Cuautle ◽  
Luis Gerardo de la Fraga

In CMOS integrated circuit (IC) design, operational amplifiers are one of the most useful active devices to enhance applications in analog signal processing, signal conditioning and so on. However, due to the CMOS technology downscaling, along the very large number of design variables and their trade-offs, it results difficult to reach target specifications without the application of optimization methods. For this reason, this work shows the advantages of performing many-objective optimization and this algorithm is compared to the well-known mono- and multi-objective metaheuristics, which have demonstrated their usefulness in sizing CMOS ICs. Three CMOS operational transconductance amplifiers are the case study in this work; they were sized by applying mono-, multi- and many-objective algorithms. The well-known non-dominated sorting genetic algorithm version 3 (NSGA-III) and the many-objective metaheuristic-based on the R2 indicator (MOMBI-II) were applied to size CMOS amplifiers and their sized solutions were compared to mono- and multi-objective algorithms. The CMOS amplifiers were optimized considering five targets, associated to a figure of merit (FoM), differential gain, power consumption, common-mode rejection ratio and total silicon area. The designs were performed using UMC 180 nm CMOS technology. To show the advantage of applying many-objective optimization algorithms to size CMOS amplifiers, the amplifier with the best performance was used to design a fractional-order integrator based on OTA-C filters. A variation analysis considering the process, the voltage and temperature (PVT) and a Monte Carlo analysis were performed to verify design robustness. Finally, the OTA-based fractional-order integrator was used to design a fractional-order chaotic oscillator, showing good agreement between numerical and SPICE simulations.


2021 ◽  
Vol 5 (3) ◽  
pp. 122
Author(s):  
Martín Alejandro Valencia-Ponce ◽  
Perla Rubí Castañeda-Aviña ◽  
Esteban Tlelo-Cuautle ◽  
Victor Hugo Carbajal-Gómez ◽  
Victor Rodolfo González-Díaz ◽  
...  

Fractional-order chaotic oscillators (FOCOs) have shown more complexity than integer-order chaotic ones. However, the majority of electronic implementations were performed using embedded systems; compared to analog implementations, they require huge hardware resources to approximate the solution of the fractional-order derivatives. In this manner, we propose the design of FOCOs using fractional-order integrators based on operational transconductance amplifiers (OTAs). The case study shows the implementation of FOCOs by cascading first-order OTA-based filters designed with complementary metal-oxide-semiconductor (CMOS) technology. The OTAs have programmable transconductance, and the robustness of the fractional-order integrator is verified by performing process, voltage and temperature variations as well as Monte Carlo analyses for a CMOS technology of 180 nm from the United Microelectronics Corporation. Finally, it is highlighted that post-layout simulations are in good agreement with the simulations of the mathematical model of the FOCO.


Author(s):  
Kenan Altun

In this paper, fractional-order chaotic systems in an analog-based platform are realized using field programmable analog arrays (FPAA) hardware. With the help of this work, we aim to increase the complexity of chaotic systems. Approximated transfer functions in frequency domain are obtained by analyzing different values of fractional-order integrator with the Charef approximation method. In this study, fractional-order numerical calculation of Rssler and Sprott type-H chaotic systems is carried out. MATLAB Simulink model for chaotic systems that satisfy the conditions of chaos in the boundaries of fractional order value is schematically presented. Moreover, CAM designs and analysis that facilitate the realization of fractional-order transfer functions in FPAA platforms are introduced. The analog-based FPAA experimental and numerical outcomes for fractional order chaotic systems are demonstrated. The comparison of the results obtained in the numerical analysis and simulation study with the experimental results is given. This study confirms that the unpredictability of the chaos carrier signals realized by digital-based can be increased with analog-based FPAA hardware and fractional-order structures so as to provide safer transfer of information signals.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1854
Author(s):  
Andriy Lozynskyy ◽  
Andriy Chaban ◽  
Tomasz Perzyński ◽  
Andrzej Szafraniec ◽  
Lidiia Kasha

Based on the general theory of fractional order derivatives and integrals, application of the Caputo–Fabrizio operator is analyzed to improve a mathematical model of a two-mass system with a long shaft and concentrated parameters. Thus, the real transmission of complex electric drives, which consist of long shafts with a sufficient degree of adequacy, is presented as a two-mass system. Such a system is described by ordinary fractional order differential equations. In addition, it is well known that an elastic mechanical wave, propagating along a drive transmission with a long stiff shaft, creates a retardation effect on distribution of the time–space angular velocity, the rotation angle of the shaft, and its elastic moment. The approach proposed in the current work helps to take in account the moving elastic wave along the shaft of electric drive mechanism. On this basis, it is demonstrated that the use of the fractional order integrator in the model for the elastic moment enables it to reproduce real transient processes in the joint coordinates of the system. It also provides an accuracy equivalent to the model with distributed parameters. The distance between the traditional model and the model in which the fractional integral is used for the elastic moment modelling in a two-mass system, with a long shaft, is analyzed.


Inventions ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 53 ◽  
Author(s):  
Hady H. Fayek ◽  
Behnam Mohammadi-Ivatloo

The world is targeting fully renewable power generation by the middle of the century. Distributed generation is the way to increase the penetration level of renewable energies. This paper presents load frequency control of a hybrid tidal, wind, and wave microgrid to feed an isolated island. This research is a step towards 100% renewable energy communities in remote seas/oceans islands. The wave and tidal generation systems model are presented. The study presents load frequency control through three supplementary control strategies: conventional integrators, fractional order integrator, and non-linear fractional order integrator. All the controllers of the microgrid are designed by using a novel black widow optimization technique. The applied technique is compared to other existing state-of-the-art algorithms. The results show that the black widow non-linear fractional integrator has a better performance over other strategies. Coordination between the unloaded tidal system and blade pitch control of both wind and tidal systems are adopted in the microgrid to utilize the available reserve power for the frequency support. Simulation and optimization studies are performed using the MATLAB/SIMULINK 2017a software application.


Author(s):  
Roman Sotner ◽  
Jiri Petrzela ◽  
Jan Jerabek ◽  
Norbert Herencsar ◽  
Darius Andriukaitis

2019 ◽  
Vol 66 (4) ◽  
pp. 1484-1495 ◽  
Author(s):  
Mohammed F. Tolba ◽  
Lobna A. Said ◽  
Ahmed H. Madian ◽  
Ahmed G. Radwan

Sign in / Sign up

Export Citation Format

Share Document