Hybrid Target Tracking Manipulation Theories for Combined Force and Position Control in Open and Closed Loop Manipulators

Author(s):  
David J. Giblin ◽  
Zongliang Mu ◽  
ZhongXue Gan ◽  
Kazem Kazerounian

This paper presents a new manipulation theory for controlling compliant motions of a robotic manipulator. In previous closed loop control methods, both direct kinematics and inverse kinematics of a manipulator must be resolved to convert feedback force and position data from Cartesian space to joint space. However, in many cases, the solution of direct kinematics in a parallel manipulator or the solution of inverse kinematics in a serial manipulator is not easily available. In this study, the force and position data are packed into one set of “motion feedback,” by replacing the force errors with virtual motion quantities, or one set of “force feedback,” by replacing motion errors with virtual force quantities. The joint torques are adjusted based on this combined feed back package. Since only Jacobian of direct kinematics or Jacobian of inverse kinematics is used in the control scheme, the computational complexity is reduced significantly. The applications of this theory are demonstrated in simulation experiments with both serial and parallel manipulators.

2006 ◽  
Vol 129 (3) ◽  
pp. 326-333 ◽  
Author(s):  
David J. Giblin ◽  
Mu Zongliang ◽  
Kazem Kazerounian ◽  
ZhongXue Gan

This paper presents a new manipulation theory for controlling compliant motions of a robotic manipulator. In previous closed loop control methods, both direct kinematics and inverse kinematics of a manipulator must be resolved to convert feedback force and position data from Cartesian space to joint space. However, in many cases, the solution of direct kinematics in a parallel manipulator or the solution of inverse kinematics in a serial manipulator is not easily available. In this study, the force and position data are packed into one set of “motion feedback,” by replacing the force errors with virtual motion quantities, or one set of “force feedback,” by replacing motion errors with virtual force quantities. The joint torques are adjusted based on this combined feedback package. Since only Jacobian of direct kinematics or Jacobian of inverse kinematics is used, the computational complexity is reduced significantly, and the control scheme is more stable at or near singular manipulator configurations. Furthermore, the complexities and oddities associated with hybrid control, such as nonuniformity of the space matrix and incompatibility of simultaneous position and force control in the same direction are circumvented. The applications of this theory are demonstrated in simulation experiments with both serial and parallel manipulators.


2014 ◽  
Vol 941-944 ◽  
pp. 2243-2246
Author(s):  
Xin Zhou

In view of the existing problems of indirect position closed-loop control, a digitized closed-loop control method is presented and a new kind of position control system with fully digitized closed-loop based on that method is developed. In this way, the fully digitized control of cutter trajectory is implemented with the features of digitized driving, digitized measuring and digitized position control, so that the machining accuracy of the NC machine tools is effectively assured. This system has been used on varieties of NC machine tools and very good results have been obtained in the machining of complex precision parts.


2004 ◽  
Vol 16 (4) ◽  
pp. 381-387 ◽  
Author(s):  
Hiroe Hashiguchi ◽  
◽  
Suguru Arimoto ◽  
Ryuta Ozawa

To enhance robot hand dexterity, it is said that the robot should be designed to have a redundant number of degrees of freedom. In redundant robotic systems, inverse kinematics from task description space to joint space becomes ill-posed, making it difficult to determine joint motions. To avoid this ill-posedness, most proposed methods introduce an additional input term calculated from an intentionally introduced artificial index of performance. We propose a 4 DOF redundant handwriting robot using novel simple control to solve the problem of ill-posedness based on sensory feedback. We demonstrate the effectiveness of proposed control in computer simulation of closed-loop dynamics with the constraint that the robot’s endpoint be always on a two-dimensional plane.


2012 ◽  
Vol 233 ◽  
pp. 150-153
Author(s):  
Jin Yu ◽  
Ming Zhen Fan ◽  
Guo Qin Huang ◽  
Min Yu

Nowadays, huge hydraulic press plays an important role in the heavy industry. The synchronized hydraulic cylinder is the key component, which will affect the performance of the press. Thus, a thorough investigation to the main cylinder is required. In this paper, a mathematical model was built for the position closed-loop control of active synchronous hydraulic cylinders, and transfer function of the corresponding single cylinder was deduced. Simulation and calibration of the working cylinder servo position control system was accomplished with MATLAB, so as to improve the response speed and stability of the single working cylinder system. The results showed that a single hydraulic piston cylinder had a better position control features, which offered a theory basis for the design of the main drivers of forging hydraulic machine synchronization system.


2013 ◽  
Vol 336-338 ◽  
pp. 940-943
Author(s):  
Long Wang ◽  
Chun Hua He ◽  
Yu Xian Liu ◽  
Da Chuan Liu ◽  
Long Tao Lin ◽  
...  

This paper presents one kind of digital closed loop control system of MEMS (Micro Electro-Mechanical Systems) vibratory gyroscope, particularly concentrating on the sense mode of MEMS gyroscope. The controller consists of a sine wave source realized by CORDIC algorithm, multiplication demodulators, some low-pass filters and force feedback rebalance module. Compared with the open loop sense system of gyroscope, the closed loop sense system has larger measurement range and wider bandwidth. Besides, the sine wave source realized with CORDIC algorithm can save hardware resources. The digital system is demonstrated on a PCB with a FPGA on it. The test results show that the measurement range of the closed loop system can be increased to 3 times by the open loop, and the bandwidth can be extended to 262Hz from 27Hz of the open loop system.


1991 ◽  
Vol 113 (3) ◽  
pp. 438-443 ◽  
Author(s):  
S. P. Bhat ◽  
D. K. Miu

Using the Laplace domain synthesis technique documented in earlier publications, experiments on the closed-loop point-to-point position control of a flexible beam are presented. Two different approaches are described, a feed-forward control and an iterative open-loop control. Solution to the robustness problems encountered during actual implementation is also demonstrated.


2019 ◽  
Vol 31 (1) ◽  
pp. 40-52
Author(s):  
Davood Soleymanzadeh ◽  
Hamed Ghafarirad ◽  
Mohammad Zareinejad

Position control of piezoelectric actuators is greatly affected by nonlinearities such as hysteresis and creep. Therefore, precise position sensors must be utilized which have high cost and complicated structures in micro scales. Charge-based position estimation is an alternative method which resorts to piezoelectric linear charge-position property to estimate the actuator position, but in low-impedance actuators, there is a charge leakage caused by actuator internal resistance which deteriorates the position estimation and closed-loop control performance. In this article, the leakage is considered as a sensor fault. Therefore, a combination of charge measurement method and an appropriate observer is designed to detect and isolate the mentioned fault and estimate the actuator position properly. In addition, an adaptive sliding mode control procedure is proposed for trajectory tracking in the presence of estimated states. The required analysis is carried out to guarantee the closed-loop stability. Finally, experimental results show the effectiveness of the proposed method.


Author(s):  
Farid Ferguene ◽  
Redouane Toumi

Dynamic External Force Feedback Loop Control of a Robot Manipulator Using a Neural Compensator—Application to the Trajectory Following in an Unknown EnvironmentForce/position control strategies provide an effective framework to deal with tasks involving interaction with the environment. One of these strategies proposed in the literature is external force feedback loop control. It fully employs the available sensor measurements by operating the control action in a full dimensional space without using selection matrices. The performance of this control strategy is affected by uncertainties in both the robot dynamic model and environment stiffness. The purpose of this paper is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. We show that this control strategy is robust with respect to payload uncertainties, position and environment stiffness, and dry and viscous friction. Simulation results for a three degrees-of-freedom manipulator and various types of environments and trajectories show the effectiveness of the suggested approach compared with classical external force feedback loop structures.


Author(s):  
L. Johan Persson ◽  
Andrew R. Plummer ◽  
Christopher R. Bowen ◽  
Ian Brooks

This paper describes the design, simulation and testing of a piezoelectric spool valve. An actuator has been connected to the valve and tested under closed loop control. A mathematical model of the valve was produced and a prototype of the valve was tested. The mathematical model is validated against the experimental data. Step and frequency responses for both the valve and actuator are presented. It was found that displacement of the hydraulic fluid by the ring bender had an impact on the valve performance. To reduce the effect of the piezoelectric hysteresis, closed loop spool position control was evaluated. A noticeable difference can be observed between open loop and closed loop performance.


2013 ◽  
Vol 461 ◽  
pp. 352-357
Author(s):  
Hua Ming Wang ◽  
Hua An Luo ◽  
Bin Yang

Dielectric Electroactive Polymers (EAPs) are closest to natural muscles in terms of strain, energy density, efficiency and speed. A 2-DOF (Degree of Freedom) rotary manipulator driven by soft dielectric EAP is designed based on the biological agonist–antagonist configuration. Compact rolled actuators are chosen and implemented to drive the manipulator. To avoid the complicated solving of nonlinear differential equations, electromechanical characteristics of actuators are obtained by measuring their force behavior under different voltages and lengths. A CMAC (Cerebellar model articulation controller) neural network-based closed loop controller is developed to implement the position control of the manipulator and is evaluated by tracking a circle. According to the force analysis of the manipulator, forces of antagonistic actuators are determined by force decomposition to produce the desired force output, and then the voltages for actuators at certain lengths can be calculated through measured electromechanical characteristics. Experiment shows the measured force agrees well with the desired force. Due to the advantages of dielectric EAP, the manipulator has application prospects in areas of rehabilitation, force feedback or flexible manipulation without damage.


Sign in / Sign up

Export Citation Format

Share Document