scholarly journals Sensorless adaptive sliding mode position control for piezoelectric actuators with charge leakage

2019 ◽  
Vol 31 (1) ◽  
pp. 40-52
Author(s):  
Davood Soleymanzadeh ◽  
Hamed Ghafarirad ◽  
Mohammad Zareinejad

Position control of piezoelectric actuators is greatly affected by nonlinearities such as hysteresis and creep. Therefore, precise position sensors must be utilized which have high cost and complicated structures in micro scales. Charge-based position estimation is an alternative method which resorts to piezoelectric linear charge-position property to estimate the actuator position, but in low-impedance actuators, there is a charge leakage caused by actuator internal resistance which deteriorates the position estimation and closed-loop control performance. In this article, the leakage is considered as a sensor fault. Therefore, a combination of charge measurement method and an appropriate observer is designed to detect and isolate the mentioned fault and estimate the actuator position properly. In addition, an adaptive sliding mode control procedure is proposed for trajectory tracking in the presence of estimated states. The required analysis is carried out to guarantee the closed-loop stability. Finally, experimental results show the effectiveness of the proposed method.

Author(s):  
Junfeng Jiang ◽  
Xiaojun Zhou ◽  
Wei Zhao ◽  
Wei Li

A model reference adaptive sliding mode control for the position control of the permanent magnet synchronous motor is developed in this article. First of all, a fast sliding surface is designed to achieve faster convergence than the ordinary sliding mode control. Then, the adaptive laws are developed to make the control parameters, especially the switching gain, updated online. Therefore, the chattering can be reduced effectively and the disturbance can be rejected well. Finally, a reference model which produces an exponential decay curve is applied for the position error to follow. Thus, not only fast error convergence can be guaranteed, but also the dynamic process of the system response can be controlled easily by modifying the decay rate of the reference model. The proposed model reference adaptive sliding mode control scheme combines the advantages of the sliding mode control and the model reference adaptive control. Simulation and experimental results reveal that faster and more accurate performance with smoother control signal and better robustness is obtained compared with other methods. Also, the model reference adaptive sliding mode control method can maintain good performance when the system inertia or the position reference varies in a wide range.


2014 ◽  
Vol 644-650 ◽  
pp. 571-577
Author(s):  
Yue Chi ◽  
Wei Huo

The high precision control problem of a pursuer spacecraft approaching a space target in proximity missions is investigated in this paper. By choosing proper sliding mode surfaces, a novel adaptive sliding mode controller is presented in presence of model uncertainties and unknown external disturbances. It is proved that the relative position and attitude errors of the closed-loop system asymptotically converge to zero. The validity of the proposed control strategy is demonstrated by numerical simulation results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yue Zhu ◽  
Sihong Zhu

This paper presents an original adaptive sliding mode control strategy for a class of nonlinear systems on the basis of uncertainty and disturbance estimator. The nonlinear systems can be with parametric uncertainties as well as unmatched uncertainties and external disturbances. The novel adaptive sliding mode control has several advantages over traditional sliding mode control method. Firstly, discontinuous sign function does not exist in the proposed adaptive sliding mode controller, and it is not replaced by saturation function or similar approximation functions as well. Therefore, chattering is avoided in essence, and the chattering avoidance is not at the cost of reducing the robustness of the closed-loop systems. Secondly, the uncertainties do not need to satisfy matching condition and the bounds of uncertainties are not required to be unknown. Thirdly, it is proved that the closed-loop systems have robustness to parameter uncertainties as well as unmatched model uncertainties and external disturbances. The robust stability is analyzed from a second-order linear time invariant system to a nonlinear system gradually. Simulation on a pendulum system with motor dynamics verifies the effectiveness of the proposed method.


Author(s):  
Bingxin Ma ◽  
Yongfu Wang

The steering-by-wire (SbW) system is one of the main subsystems of automatic vehicles, realizing the steering control of autonomous vehicles. This paper proposes an event-triggered adaptive sliding mode control for the SbW system subject to the uncertain nonlinearity, time-varying disturbance, and limited communication resources. Firstly, an event-triggered nested adaptive sliding mode control is proposed for SbW systems. The uncertain nonlinearity is approximated by the interval type-2 fuzzy logic system (IT2 FLS). The time-varying disturbance, modeling error, and event-triggering error can be offset by robust terms of sliding mode control. The key advantage is that the high-frequency switching of sliding mode control only appears on the time derivate of control input without increasing the input-output relative degree of closed-loop SbW systems, such that the chattering phenomenon can be eliminated. Finally, theoretical analysis shows that the practical finite-time stability of the closed-loop SbW system can be achieved, and communication resources in the controller-to-actuator channels can be saved while avoiding the Zeno-behavior. Numerical simulations and experiments are given to evaluate the effectiveness of the proposed method.


Author(s):  
Meysar Zeinali ◽  
Amir Khajepour

A closed-loop control of the laser cladding process is desired due to difficulties encountered in depositing a layer with acceptable quality from both geometrical and metallurgical point of views. One of the main parameters to achieve the desired geometry in laser cladding process is the height of the deposited layers. In this paper, a real-time measurement and control of the clad height is presented. Due to complex nature of the process and presence of uncertainties, a robust and adaptive sliding mode control is proposed and implemented to control the clad height. The velocity of the substrate is used as a control input while the molten pool height, which is obtained using a charge-coupled device (CCD) camera and an image processing algorithm is used as a feedback signal. Stability of the controller is proven in the presence of time-varying uncertainties and the performance of the closed-loop system is validated by simulation and experiments. The experimental results are promising and show that the geometrical accuracy of the deposited layers can be improved significantly.


Author(s):  
Suan Xu ◽  
Zeyu Wu ◽  
Jing Wang ◽  
Kaixing Hong ◽  
Kaiming Hu

A dynamic generalized regression neural network model based on inverse Duhem operator is proposed to characterize the rate-dependent hysteresis in piezoelectric actuators. As hysteresis is multi-valued mapping, and traditional neural network can only model the system with one-to-one mapping. An inverse Duhem operator is proposed to extract the dynamic property of the hysteresis. Moreover, it can transform the multi-valued mapping of the hysteresis into a one-to-one mapping to suit the input of neural network. In order to compensate the effect of the hysteresis in piezoelectric actuator, the adaptive sliding mode controller with a feedforward hysteresis compensator is developed for the tracking control of the piezoelectric actuator. Experimental results demonstrate superior tracking performance, which validate the practicability and effectiveness of the presented approach.


Sign in / Sign up

Export Citation Format

Share Document