Trajectory Tracking of a Pneumatic Robot and Its Application in Tele-Calligraphy

Author(s):  
Xudong Hu ◽  
Ying Chen ◽  
Zuchao Zhu ◽  
Chuanyu Wu

Pneumatic devices is widely used in industry mainly in the state of open-loop control. In this paper, a pneumatic robot has been implemented in which pneumatic servo control is used to build a close-loop control system. An analytical model of an optimal state-feedback + PI is derived mathematically to describe the current design of the pneumatic robot. Based on this model, its control strategy and simulation are presented. The results show that the optimal state-feedback + PI model can satisfy the requirements of trajectory tracking of the pneumatic robot. A tele-calligraphy system, which can mimic a Chinese calligraphy, is built to test the trajectory tracking characteristics. The experimental results confirm that the pneumatic device can track the trajectory accurately.

2011 ◽  
Vol 418-420 ◽  
pp. 1865-1868
Author(s):  
Ming Jin Yang ◽  
Xi Wen Li ◽  
Zhi Gang Wang ◽  
Tie Lin Shi

The performance of speed regulating is very important to the mixing process with safe, efficient operation and high quality of production. Strategies and practices of responses and optimization of a PID-based speed regulating system of a planetary mixer were presented in this paper. Research results show that: by means of the signal constraint function presented by Simulink Response Optimization, optimization PID parameters of the 2-DOF-PID controller can be obtained, and the response of close-loop control system has quite good performance of overshoot, response time, and stability compared with an open-loop control system.


2016 ◽  
Vol 28 (04) ◽  
pp. 1650026
Author(s):  
K. Rouhollahi ◽  
M. Emadi Andani ◽  
S. M. Karbassi ◽  
M. Mojiri

Deep brain stimulation (DBS) is one of the most effective neurosurgical procedures to reduce Parkinsons tremor. The conventional method of DBS is open loop stimulation of one area of basal ganglia (BG). On the other hand, existing feedback causes the reduction of additional stimulatory signal delivered to the brain which results in the reduction of the side effects caused by the excessive stimulation intensity. Actually, the stimulatory intensity of the controllers is reduced proportionally by the reduction of hands tremor, which is in fact the intended rehabilitation of the disease. The meaningful objective of this study is to design an architecture of controllers to decrease three criteria. The first one is the hand’s tremor, the second one is the level of delivered stimulation signal to brain in disease condition and the third one is the ratio of the level of delivered stimulation signal in health condition to disease condition. In order to achieve these objectives, a new architecture of a closed loop control system to stimulate two areas of BG at the same time is presented. One area (STN: subthalamic nucleus) is stimulated with a state feedback (SF) controller (pole placement method) and the other area (GPi: globus pallidus internal) is stimulated with a partial state feedback controller (PSFC). Considering these criteria, the results illustrate that stimulating two areas leads to a suitable performance. Simulation results show that the PSF and SF controllers are robust enough to the variations of the system parameters. Moreover, we are able to estimate the parameters of BG model in real time; it is a valuable method to update the time variable parameters of this model.


2018 ◽  
Vol 189 ◽  
pp. 06012
Author(s):  
Faling Hu ◽  
Tongfeng Niu ◽  
Jun Yao ◽  
Bingyan Cui ◽  
Haoxing Xu ◽  
...  

According to the working principle of pulse oxygen supplies, we analyze how to realize the control of the oxygen flow by double different valves. a two-dimensional fuzzy control system is proposed to solve the unstable problem, which is brought by the shortcomings of the open-loop control system. We add a new parameter, the rate of the differential pressure signal changes, which contributes to a close –loop control system and increases the stability of the system. The experiments and the data show that the fuzzy control system make the process of breathing much more comfortable and solve the hysteresis and overshoot caused by the open-loop control system. The product reliability has been greatly improved.


2021 ◽  
Author(s):  
Debaprasad Dutta

An optimal state feedback control strategy is proposed for processes described by non-linear, distributed-parameter models. For different values of a given parameter susceptible to upsets, the strategy involves off-line computation of a repository of optimal open-loop control, state, and the gain needed for the feedback adjustment of control. The gain is determined by minimizing the perturbation of the objective functional, state and control due to an upset. When an upset is encountered in a running process, the repository is utilized to obtain the control adjustment required to steer the process to the new optimal state. The strategy is successfully applied to a highly non-linear, heavy oil recovery process with the state depending non-linearly on time and two spatial directions inside a moving boundary, and subject to pressure upsets. The results demonstrate that the proposed strategy is able to determine control adjustment with negligible time delay, and navigate the process to the new optimal state when disturbed by a pressure upset.


2021 ◽  
Author(s):  
Debaprasad Dutta

An optimal state feedback control strategy is proposed for processes described by non-linear, distributed-parameter models. For different values of a given parameter susceptible to upsets, the strategy involves off-line computation of a repository of optimal open-loop control, state, and the gain needed for the feedback adjustment of control. The gain is determined by minimizing the perturbation of the objective functional, state and control due to an upset. When an upset is encountered in a running process, the repository is utilized to obtain the control adjustment required to steer the process to the new optimal state. The strategy is successfully applied to a highly non-linear, heavy oil recovery process with the state depending non-linearly on time and two spatial directions inside a moving boundary, and subject to pressure upsets. The results demonstrate that the proposed strategy is able to determine control adjustment with negligible time delay, and navigate the process to the new optimal state when disturbed by a pressure upset.


2014 ◽  
Vol 1061-1062 ◽  
pp. 927-930
Author(s):  
Qian Qian Wang ◽  
Yi Hui Feng ◽  
Yu Lin Wang

There are some problems existing in open loop system with stepping motor as driving motor, such as lower servo precision, without compensation for step losing of stepping motor and so on. This paper presented a new approach called quasi-close loop control. With the help of the method, the control accuracy will be similar to that of close loop system and can be obtained, and the system will have the same stability as that of open loop system. With MCS-51 single-chip microcomputer as control unit and grating scales for measuring displacement, a quasi-close loop control system was built on NC lathe. The practice shows that the quasi-close loop control system has advantages such as high control accuracy, good stability and high cost performance. It is suited to economical NC machine tools and has wide application prospects.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


Author(s):  
Bao Tri Diep ◽  
Quoc Hung Nguyen ◽  
Thanh Danh Le

The purpose of this paper is to design a control algorithm for a 2-DoF rotary joystick model. Firstly, the structure of the joystick, which composes of two magneto-rheological fluid actuators (shorten MRFA) with optimal configuration coupled perpendicularly by the gimbal mechanism to generate the friction torque for each independent rotary movement, is introduced. The control strategy of the designed joystick is then suggested. Really, because of two independent rotary movements, it is necessary to design two corresponding controllers. Due to hysteresis and nonlinear dynamic characteristics of the MRFA, controllers based an accurate dynamic model are difficult to realize. Hence, to release this issue, the proposed controller (named self-turning fuzzy controllers-STFC) will be built through the fuzzy logic algorithm in which the parameters of controllers are learned and trained online by Levenberg-Marquardt training algorithm. Finally, an experimental apparatus will be constructed to assess the effectiveness of the force feedback controls. Herein, three experimental cases are performed to compare the control performance of open-loop and close-loop control method, where the former is done through relationship between the force at the knob and the current supplied to coil while the latter is realized based on the proposed controller and PID controller. The experimental results provide strongly the ability of the proposed controller, meaning that the STFC is robust and tracks well the desirable force with high accuracy compared with both the PID controller and the open-loop control method.


Sign in / Sign up

Export Citation Format

Share Document