A Continuous Model for Protein Synthesis Using Artificial Power Law in Topology Optimization

Author(s):  
Sung Koh ◽  
Gunagjun Liu ◽  
Wen-Hong Zhu

A continuous protein synthesis formulation based on the design principles developed for structural topology optimization is proposed in this paper. Unlike conventional continuous protein design methods, the Power Law-based (PL) design formulation proposed in this paper enables using any number of residue types to accomplish the goal of protein synthesis and hence provides a continuous protein design formulation applicable to any general protein design problems. Moreover, a discrete sequence with minimum energy can be synthesized by the PL design method as it inherits the feature of material penalization used for the topology optimization. Since a continuous optimization method is implemented to solve the PL design formulation, the entire design process is more efficient and robust than the conventional design methods employing a stochastic or enumerative search process. The performance of the PL design formulation is demonstrated by designing simple lattice protein models for which an exhaustive search can be carried out to identify the sequence with minimum energy. The comparison with the exchange replica method indicates that the PL design method is millions of times more efficient than the conventional stochastic protein design method.

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Sung K. Koh ◽  
Guangjun Liu ◽  
Wen-Hong Zhu

A continuous protein synthesis formulation based on the design principles applied to topology optimization problems is proposed in this paper. In contrast to conventional continuous protein design methods, the power law (PL) protein design formulation proposed in this paper can handle any number of residue types to accomplish the goal of protein synthesis, and hence provides a general continuous formulation for protein synthesis. Moreover, a discrete sequence with minimum energy can be determined by the PL design method as it inherits the feature of material penalization used in designing a structural topology. Since a continuous optimization method is implemented to solve the PL design formulation, the entire design process is more efficient and robust than conventional design methods employing stochastic or enumerative search methods. The performance of the proposed PL design formulation is explored by designing simple lattice protein models, for which an exhaustive search can be carried out to identify a sequence with minimum energy. We used residue probabilities as an initial guess for the design optimization to enhance the capability and efficiency of the PL design formulation. The comparison with the exchange replica method indicates that the PL design method is millions of times more efficient than the conventional stochastic protein design method.


Author(s):  
Mads Baandrup ◽  
Ole Sigmund ◽  
Niels Aage

<p>This work applies a ultra large scale topology optimization method to study the optimal structure of bridge girders in cable supported bridges.</p><p>The current classic orthotropic box girder designs are limited in further development and optimiza­ tion, and suffer from substantial fatigue issues. A great disadvantage of the orthotropic girder is the loads being carried one direction at a time, thus creating stress hot spots and fatigue problems. Hence, a new design concept has the potential to solve many of the limitations in the current state­ of-the-art.</p><p>We present a design method based on ultra large scale topology optimization. The highly detailed structures and fine mesh-discretization permitted by ultra large scale topology optimization reveal new design features and previously unseen eff ects. The results demonstrate the potential of gener­ ating completely different design solutions for bridge girders in cable supported bridges, which dif­ fer significantly from the classic orthotropic box girders.</p><p>The overall goal of the presented work is to identify new and innovative, but at the same time con­ structible and economically reasonable, solutions tobe implemented into the design of future cable supported bridges.</p>


Author(s):  
Sung K. Koh ◽  
G. K. Ananthasuresh

The sequence of 20 types of amino acid residues in a heteropolymer chain of a protein is believed to be the basis for the 3-D conformation (folded structure) that a protein assumes to serve its functions. We present a deterministic optimization method to design the sequence of a simplified model of proteins for a desired conformation. A design methodology developed for the topology optimization of compliant mechanisms is adapted here by converting the discrete combinatorial problem of protein sequence design to a continuous optimization problem. It builds upon our recent work which used a minimum energy criterion on a deterministic approach to protein design using continuous models. This paper focuses on the energy gap criterion, which is argued to be one of the most important characteristics determining the stable folding of a protein chain. The concepts, methodology, and illustrative examples are presented using HP models of proteins where only two types (H: hydrophobic and P: polar) of monomers are considered instead of 20. The highlight of the method presented in this paper is the drastic reduction in computational costs.


2014 ◽  
Vol 532 ◽  
pp. 466-469 ◽  
Author(s):  
Ye Fei ◽  
Xing Kun Wang ◽  
Wen Min Liu

Turntable is the main bearing component of truck crane, its structural-load-carrying capacity influences the operational capability directly. This paper adopts the HyperWorks software to make topology optimization for the turntable structure of QY70G truck crane, and carry out the finite element analysis and comparison for the models before and after optimization, which provides an effective method to improve the turntable structure of truck crane. Turntable is one of the important components of truck crane,it bears hoist boom、lifting、luffing mechanism and bob-weight and so on, it is the transfer center of truck crane when it works, the structure will directly affect the lifting performance of the machine. But, the rotary table structure design is affected by the vehicle shape size and installation and space layout. The traditional design method is based the experience of analogy to check by finite element software, it is difficult to get the design scheme which meets the requirements given above and own better strength and stiffness, it also have the disadvantages of long design cycle and large workload. This article is based on the finite element method and structural topology optimal idea, by means of HyperWorks-OptiStruct, makes finite element analysis for the turntable structure of certain QY70G truck crane, and carries on the structural topology in the condition of setted installation location and space, in order to obtain the ideal design plan.


2013 ◽  
Vol 385-386 ◽  
pp. 1927-1932
Author(s):  
Jian Xiang Sun ◽  
Ye Yang ◽  
Jing Yi Tian

In order to overcome the shortcoming of traditional mathematical model of topology optimization which aims to the continuum structures, a new implementation combined with TOSCA Structure software is presented. To examine the accuracy of optimal topology of this kind of structural, the programming scheme for the conceptual design of one shell structure using topological optimization approaches is set firstly, then build up a new topology optimization design method of the shell structure rib model. Through the FE simulation calculations from Project 1 to Project 4, different improvement results of maximum displacements are obtained. These results demonstrate the validity and reliability of the method.


Author(s):  
Warren Brown

This paper details further progress made in the PVRC project “Development of Improved Flange Design Method for the ASME VIII, Div.2 Rewrite Project” presented during the panel session on flange design at the 2006 PVP conference in Vancouver. The major areas of flange design improvement indicated by that project are examined and the suggested solutions for implementing the improved methods into the Code are discussed. Further analysis on aspects such as gasket creep and the use of leakage-based design has been conducted. Shortcomings in the proposed ASME flange design method (ASME BFJ) and current CEN flange design methods (EN-1591) are highlighted and methods for resolution of these issues are suggested.


Sign in / Sign up

Export Citation Format

Share Document