Finite Element Analysis Using Uniform B-Spline Basis

Author(s):  
Ashok V. Kumar ◽  
Ravi K. Burla

Implicit boundary finite element method uses structured grids for analysis instead of a conforming finite element mesh. The geometry of the structure is represented independently using curve / surface equations. These equations are used to apply boundary conditions even though there may not be nodes available on the boundary. In this paper, this method is applied for analysis using uniform B-spline basis defined over structured grids. Solutions can be constructed that are C1 or C2 continuous throughout the analysis domain using B-spline basis functions. Therefore, the computed stress and strain are continuous in the analysis domain thus eliminating the need for smoothing stress/strain results. Compared to conforming mesh, it is easier to generate structured grids that overlap the geometry and the elements in the grid are regular shaped and undistorted. Numerical examples are presented to demonstrate the performance of these B-spline elements. The results are compared with analytical solutions as well as traditional finite element solutions. Convergence studies for several examples show that B-spline elements provide accurate solutions with fewer elements and nodes as compared to traditional finite element method (FEM).

Author(s):  
Joanna M. Brown ◽  
Malcolm I. G. Bloor ◽  
M. Susan Bloor ◽  
Michael J. Wilson

Abstract A PDE surface is generated by solving partial differential equations subject to boundary conditions. To obtain an approximation of the PDE surface in the form of a B-spline surface the finite element method, with the basis formed from B-spline basis functions, can be used to solve the equations. The procedure is simplest when uniform B-splines are used, but it is also feasible, and in some cases desirable, to use non-uniform B-splines. It will also be shown that it is possible, if required, to modify the non-uniform B-spline approximation in a variety of ways, using the properties of B-spline surfaces.


Author(s):  
Farhang Daneshmand ◽  
Abdolaziz Abdollahi ◽  
Mehdi Liaghat ◽  
Yousef Bazargan Lari

Vibration analysis for complicated structures, or for problems requiring large numbers of modes, always requires fine meshing or using higher order polynomials as shape functions in conventional finite element analysis. Since it is hard to predict the vibration mode a priori for a complex structure, a uniform fine mesh is generally used which wastes a lot of degrees of freedom to explore some local modes. By the present wavelets element approach, the structural vibration can be analyzed by coarse mesh first and the results can be improved adaptively by multi-level refining the required parts of the model. This will provide accurate data with less degrees of freedom and computation. The scaling functions of B-spline wavelet on the interval (BSWI) as trial functions that combines the versatility of the finite element method with the accuracy of B-spline functions approximation and the multiresolution strategy of wavelets is used for frame structures vibration analysis. Instead of traditional polynomial interpolation, scaling functions at the certain scale have been adopted to form the shape functions and construct wavelet-based elements. Unlike the process of wavelets added directly in the other wavelet numerical methods, the element displacement field represented by the coefficients of wavelets expansions is transformed from wavelet space to physical space via the corresponding transformation matrix. To verify the proposed method, the vibrations of a cantilever beam and a plane structures are studied in the present paper. The analyses and results of these problems display the multi-level procedure and wavelet local improvement. The formulation process is as simple as the conventional finite element method except including transfer matrices to compute the coupled effect between different resolution levels. This advantage makes the method more competitive for adaptive finite element analysis. The results also show good agreement with those obtained from the classical finite element method and analytical solutions.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


Sign in / Sign up

Export Citation Format

Share Document