A Modified Reliability Index Approach for Reliability-Based Design Optimization

Author(s):  
Po Ting Lin ◽  
Hae Chang Gea ◽  
Yogesh Jaluria

RBDO problems have been intensively studied for many decades. Since Hasofer and Lind defined a measure of the second-moment reliability index, many RBDO methods utilizing the concept of reliability index have been introduced as the Reliability Index Approach (RIA). In the RIA, a reliability analysis problem is formulated to find the reliability index for each performance constraint and the solutions are used to evaluate the failure probability. However, the traditional RIA suffers from inefficiency and convergence problems. In this paper, we revisited the definition of the reliability index and revealed the convergence problem in the traditional RIA. Furthermore, a new definition of the reliability index is proposed to correct this problem and a modified Reliability Index Approach based on this definition is developed. Numerical examples using both the traditional RIA and the modified RIA are compared and discussed.

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Po Ting Lin ◽  
Hae Chang Gea ◽  
Yogesh Jaluria

Reliability-based design optimization (RBDO) problems have been intensively studied for many decades. Since Hasofer and Lind [1974, “Exact and Invariant Second-Moment Code Format,” J. Engrg. Mech. Div., 100(EM1), pp. 111–121] defined a measure of the second-moment reliability index, many RBDO methods utilizing the concept of reliability index have been introduced as the reliability index approach (RIA). In the RIA, reliability analysis problems are formulated to find the reliability indices for each performance constraint and the solutions are used to evaluate the failure probability. However, the traditional RIA suffers from inefficiency and convergence problems. In this paper, we revisited the definition of the reliability index and revealed the convergence problem in the traditional RIA. Furthermore, a new definition of the reliability index is proposed to correct this problem and a modified reliability index approach is developed based on this definition. The strategies to solve RBDO problems with non-normally distributed design variables by the modified RIA are also investigated. Numerical examples using both the traditional and modified RIAs are compared and discussed.


1999 ◽  
Vol 121 (4) ◽  
pp. 557-564 ◽  
Author(s):  
J. Tu ◽  
K. K. Choi ◽  
Y. H. Park

This paper presents a general approach for probabilistic constraint evaluation in the reliability-based design optimization (RBDO). Different perspectives of the general approach are consistent in prescribing the probabilistic constraint, where the conventional reliability index approach (RIA) and the proposed performance measure approach (PMA) are identified as two special cases. PMA is shown to be inherently robust and more efficient in evaluating inactive probabilistic constraints, while RIA is more efficient for violated probabilistic constraints. Moreover, RBDO often yields a higher rate of convergence by using PMA, while RIA yields singularity in some cases.


Author(s):  
Po Ting Lin ◽  
Yogesh Jaluria ◽  
Hae Chang Gea

Reliability-based Design Optimization problems have been solved by two well-known methods: Reliability Index Approach (RIA) and Performance Measure Approach (PMA). RIA generates first-order approximate probabilistic constraints using the measures of reliability indices. For infeasible design points, the traditional RIA method suffers from inaccurate evaluation of the reliability index. To overcome this problem, the Modified Reliability Index Approach (MRIA) has been proposed. The MRIA provides the accurate solution of the reliability index but also inherits some inefficiency characteristics from the Most Probable Failure Point (MPFP) search when nonlinear constraints are involved. In this paper, the benchmark examples have been utilized to examine the efficiency and stability of both PMA and MRIA. In our study, we found that the MRIA is capable of obtaining the correct optimal solutions regardless of the locations of design points but the PMA is much efficient in the inverse reliability analysis. To take advantages of the strengths of both methods, a Hybrid Reliability Approach (HRA) is proposed. The HRA uses a selection factor that can determine which method to use during optimization iterations. Numerical examples from the proposed method are presented and compared with the MRIA and the PMA.


2005 ◽  
Vol 297-300 ◽  
pp. 1882-1887
Author(s):  
Tae Hee Lee ◽  
Jung Hun Yoo

In practical design applications, most design variables such as thickness, diameter and material properties are not deterministic but stochastic numbers that can be represented by their mean values with variances because of various uncertainties. When the uncertainties related with design variables and manufacturing process are considered in engineering design, the specified reliability of the design can be achieved by using the so-called reliability based design optimization. Reliability based design optimization takes into account the uncertainties in the design in order to meet the user requirement of the specified reliability while seeking optimal solution. Reliability based design optimization of a real system becomes now an emerging technique to achieve reliability, robustness and safety of the design. It is, however, well known that reliability based design optimization can often have so multiple local optima that it cannot converge into the specified reliability. To overcome this difficulty, barrier function approach in reliability based design optimization is proposed in this research and feasible solution with specified reliability index is always provided if a feasible solution is available. To illustrate the proposed formulation, reliability based design optimization of a bracket design is performed. Advanced mean value method and first order reliability method are employed for reliability analysis and their optimization results are compared with reliability index approach based on the accuracy and efficiency.


2019 ◽  
Vol 19 (3) ◽  
pp. 221-230 ◽  
Author(s):  
Gh. Kharmanda ◽  
I. R. Antypas

Introduction. The integration of reliability and optimization concepts seeks to design structures that should be both economic and reliable. This model is called Reliability-Based Design Optimization (RBDO). In fact, the coupling between the mechanical modelling, the reliability analyses and the optimization methods leads to very high computational cost and weak convergence stability. Materials andMethods. Several methods have been developed to overcome these difficulties. The methods called Reliability Index Approach (RIA) and Performance Measure Approach (PMA) are two alternative methods. RIA describes the probabilistic constraint as a reliability index while PMA was proposed by converting the probability measure to a performance measure. An Optimum Safety Factor (OSF) method is proposed to compute safety factors satisfying a required reliability level without demanding additional computing cost for the reliability evaluation. The OSF equations are formulated considering RIA and PMA and extended to multiple failure case.Research Results. Several linear and nonlinear distribution laws are applied to composite yarns studies and then extended to multiple failure modes. It has been shown that the idea of the OSF method is to avoid the reliability constraint evaluation with a particular optimization process.Discussion and Conclusions. The simplified implementation framework of the OSF strategy consists of decoupling the optimization and the reliability analyses. It provides designers with efficient solutions that should be economic satisfying a required reliability level. It is demonstrated that the RBDO compared to OSF has several advantages: small number of optimization variables, good convergence stability, small computing time, satisfaction of the required reliability levels.


Author(s):  
Ioannis Petromichelakis ◽  
Apostolos F. Psaros ◽  
Ioannis A. Kougioumtzoglou

Abstract A methodology based on the Wiener path integral technique (WPI) is developed for stochastic response determination and reliability-based design optimization of a class of nonlinear electromechanical energy harvesters endowed with fractional derivative elements. In this regard, first, the WPI technique is appropriately adapted and enhanced to account both for the singular diffusion matrix and for the fractional derivative modeling of the capacitance in the coupled electromechanical governing equations. Next, a reliability-based design optimization problem is formulated and solved, in conjunction with the WPI technique, for determining the optimal parameters of the harvester. It is noted that the herein proposed definition of the failure probability constraint is particularly suitable for harvester configurations subject to space limitations. Several numerical examples are included, while comparisons with pertinent Monte Carlo simulation data demonstrate the satisfactory performance of the methodology.


Author(s):  
V. Togan ◽  
H. Karadeniz ◽  
A. T. Daloglu

In this work, economical design implementation of a jacket tower, which is subjected to some uncertainties associated with the loads, the material properties, and environmental data etc., is presented. In order to fulfill the defined task, reliability based design optimization (RBDO) concept combining the reliability analysis and optimization is performed with reliability constraints including stress, buckling, and the lowest natural frequency. The probabilistic constraints are evaluated by using Reliability Index Approach (RIA) and Performance Measure approach (PMA). The mass of the tower is considered as being the objective function; the thickness and diameter of the cross-section of the jacket members are taken as being design variables of the optimization.


Sign in / Sign up

Export Citation Format

Share Document