scholarly journals Efficient optimum safety factor approach for system reliability-based design optimization with application to composite yarns

2019 ◽  
Vol 19 (3) ◽  
pp. 221-230 ◽  
Author(s):  
Gh. Kharmanda ◽  
I. R. Antypas

Introduction. The integration of reliability and optimization concepts seeks to design structures that should be both economic and reliable. This model is called Reliability-Based Design Optimization (RBDO). In fact, the coupling between the mechanical modelling, the reliability analyses and the optimization methods leads to very high computational cost and weak convergence stability. Materials andMethods. Several methods have been developed to overcome these difficulties. The methods called Reliability Index Approach (RIA) and Performance Measure Approach (PMA) are two alternative methods. RIA describes the probabilistic constraint as a reliability index while PMA was proposed by converting the probability measure to a performance measure. An Optimum Safety Factor (OSF) method is proposed to compute safety factors satisfying a required reliability level without demanding additional computing cost for the reliability evaluation. The OSF equations are formulated considering RIA and PMA and extended to multiple failure case.Research Results. Several linear and nonlinear distribution laws are applied to composite yarns studies and then extended to multiple failure modes. It has been shown that the idea of the OSF method is to avoid the reliability constraint evaluation with a particular optimization process.Discussion and Conclusions. The simplified implementation framework of the OSF strategy consists of decoupling the optimization and the reliability analyses. It provides designers with efficient solutions that should be economic satisfying a required reliability level. It is demonstrated that the RBDO compared to OSF has several advantages: small number of optimization variables, good convergence stability, small computing time, satisfaction of the required reliability levels.

1999 ◽  
Vol 121 (4) ◽  
pp. 557-564 ◽  
Author(s):  
J. Tu ◽  
K. K. Choi ◽  
Y. H. Park

This paper presents a general approach for probabilistic constraint evaluation in the reliability-based design optimization (RBDO). Different perspectives of the general approach are consistent in prescribing the probabilistic constraint, where the conventional reliability index approach (RIA) and the proposed performance measure approach (PMA) are identified as two special cases. PMA is shown to be inherently robust and more efficient in evaluating inactive probabilistic constraints, while RIA is more efficient for violated probabilistic constraints. Moreover, RBDO often yields a higher rate of convergence by using PMA, while RIA yields singularity in some cases.


Author(s):  
Po Ting Lin ◽  
Yogesh Jaluria ◽  
Hae Chang Gea

Reliability-based Design Optimization problems have been solved by two well-known methods: Reliability Index Approach (RIA) and Performance Measure Approach (PMA). RIA generates first-order approximate probabilistic constraints using the measures of reliability indices. For infeasible design points, the traditional RIA method suffers from inaccurate evaluation of the reliability index. To overcome this problem, the Modified Reliability Index Approach (MRIA) has been proposed. The MRIA provides the accurate solution of the reliability index but also inherits some inefficiency characteristics from the Most Probable Failure Point (MPFP) search when nonlinear constraints are involved. In this paper, the benchmark examples have been utilized to examine the efficiency and stability of both PMA and MRIA. In our study, we found that the MRIA is capable of obtaining the correct optimal solutions regardless of the locations of design points but the PMA is much efficient in the inverse reliability analysis. To take advantages of the strengths of both methods, a Hybrid Reliability Approach (HRA) is proposed. The HRA uses a selection factor that can determine which method to use during optimization iterations. Numerical examples from the proposed method are presented and compared with the MRIA and the PMA.


Author(s):  
Po Ting Lin ◽  
Shu-Ping Lin

Reliability-Based Design Optimization (RBDO) algorithms have been developed to solve design optimization problems with existence of uncertainties. Traditionally, the original random design space is transformed to the standard normal design space, where the reliability index can be measured in a standardized unit. In the standard normal design space, the Modified Reliability Index Approach (MRIA) measured the minimum distance from the design point to the failure region to represent the reliability index; on the other hand, the Performance Measure Approach (PMA) performed inverse reliability analysis to evaluate the target function performance in a distance of reliability index away from the design point. MRIA was able to provide stable and accurate reliability analysis while PMA showed greater efficiency and was widely used in various engineering applications. However, the existing methods cannot properly perform reliability analysis in the standard normal design space if the transformation to the standard normal space does not exist or is difficult to determine. To this end, a new algorithm, Ensemble of Gaussian Reliability Analyses (EoGRA), was developed to estimate the failure probability using Gaussian-based Kernel Density Estimation (KDE) in the original design space. The probabilistic constraints were formulated based on each kernel reliability analysis for the optimization processes. This paper proposed an efficient way to estimate the constraint gradient and linearly approximate the probabilistic constraints with fewer function evaluations. Some numerical examples with various random distributions are studied to investigate the numerical performances of the proposed method. The results showed EoGRA is capable of finding correct solutions in some problems that cannot be solved by traditional methods.


2005 ◽  
Vol 297-300 ◽  
pp. 1882-1887
Author(s):  
Tae Hee Lee ◽  
Jung Hun Yoo

In practical design applications, most design variables such as thickness, diameter and material properties are not deterministic but stochastic numbers that can be represented by their mean values with variances because of various uncertainties. When the uncertainties related with design variables and manufacturing process are considered in engineering design, the specified reliability of the design can be achieved by using the so-called reliability based design optimization. Reliability based design optimization takes into account the uncertainties in the design in order to meet the user requirement of the specified reliability while seeking optimal solution. Reliability based design optimization of a real system becomes now an emerging technique to achieve reliability, robustness and safety of the design. It is, however, well known that reliability based design optimization can often have so multiple local optima that it cannot converge into the specified reliability. To overcome this difficulty, barrier function approach in reliability based design optimization is proposed in this research and feasible solution with specified reliability index is always provided if a feasible solution is available. To illustrate the proposed formulation, reliability based design optimization of a bracket design is performed. Advanced mean value method and first order reliability method are employed for reliability analysis and their optimization results are compared with reliability index approach based on the accuracy and efficiency.


2006 ◽  
Vol 129 (4) ◽  
pp. 449-454 ◽  
Author(s):  
Alan P. Bowling ◽  
John E. Renaud ◽  
Jeremy T. Newkirk ◽  
Neal M. Patel ◽  
Harish Agarwal

In this investigation a robotic system’s dynamic performance is optimized for high reliability under uncertainty. The dynamic capability equations (DCE) allow designers to predict the dynamic performance of a robotic system for a particular configuration and reference point on the end effector (i.e., point design). Here the DCE are used in conjunction with a reliability-based design optimization (RBDO) strategy in order to obtain designs with robust dynamic performance with respect to the end-effector reference point. In this work a unilevel performance measure approach is used to perform RBDO. This is important for the reliable design of robotic systems in which a solution to the DCE is required for each constraint call. The method is illustrated on a robot design problem.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Po Ting Lin ◽  
Hae Chang Gea ◽  
Yogesh Jaluria

Reliability-based design optimization (RBDO) problems have been intensively studied for many decades. Since Hasofer and Lind [1974, “Exact and Invariant Second-Moment Code Format,” J. Engrg. Mech. Div., 100(EM1), pp. 111–121] defined a measure of the second-moment reliability index, many RBDO methods utilizing the concept of reliability index have been introduced as the reliability index approach (RIA). In the RIA, reliability analysis problems are formulated to find the reliability indices for each performance constraint and the solutions are used to evaluate the failure probability. However, the traditional RIA suffers from inefficiency and convergence problems. In this paper, we revisited the definition of the reliability index and revealed the convergence problem in the traditional RIA. Furthermore, a new definition of the reliability index is proposed to correct this problem and a modified reliability index approach is developed based on this definition. The strategies to solve RBDO problems with non-normally distributed design variables by the modified RIA are also investigated. Numerical examples using both the traditional and modified RIAs are compared and discussed.


Sign in / Sign up

Export Citation Format

Share Document