Model Parameter Identification of Nonlinear Dynamics Systems by Trajectory Pattern Method

Author(s):  
Jahangir Rastegar ◽  
Dake Feng ◽  
Kavous Jorabchi

In this paper, a new method is presented for model parameter identification of a large class of fully controlled nonlinear dynamics systems such as robot manipulators. The method uses trajectory patterns with feed-forward controls to identify model parameters of the system. The developed method ensures full system stability, does not require close initial estimated values for the parameters to be identified, and provides a systematic method of emphasizing on the estimation of the parameters associated with lower order terms of the system dynamics model and gradually upgrading the accuracy with which the model parameters, particularly those associated with the higher order terms of the system dynamics model are estimated. The developed method is based on Trajectory Pattern Method (TPM). In this method, for a pattern of motion the inverse dynamics model of the system is derived in algebraic form in terms of the trajectory pattern parameters. The system dynamics model parameters are then identified using a systematic algorithm which ensures system stability as well as accurate estimation of the model parameters associated with lower as well as higher order terms. Mathematical proof of convergence of the developed method and an example of its application are provided.

Author(s):  
Dake Feng ◽  
Jahangir Rastegar

In this paper, a new method is presented for model parameter identification of a large class of nonlinear dynamics systems that are not fully controlled. The method uses trajectory patterns with feed-forward controls to identify model parameters of the system. The developed method ensures full system stability, does not require close initial estimated values for the parameters to be identified, and provides a systematic method of emphasizing on the estimation of the parameters associated with lower order terms of the system dynamics model and gradually upgrading the accuracy with which the model parameters, particularly those associated with the higher order terms of the system dynamics, are estimated. The developed method is based on Trajectory Pattern Method (TPM). The mathematical proof of convergence of the developed method and results of its implementation on a typical system with highly non-linear dynamics are provided.


Author(s):  
Jahangir Rastegar ◽  
Dake Feng

In this paper, a new method is presented for model parameter identification of a large class of fully controlled nonlinear dynamics systems such as robot manipulators. The method uses trajectory patterns with feed-forward controls to identify model parameters of the system. The developed method ensures full system stability, does not require close initial estimated values for the parameters to be identified, and provides a systematic method of emphasizing on the estimation of the parameters associated with lower order terms of the system dynamics model and gradually upgrading the accuracy with which the model parameters, particularly those associated with the higher order terms of the system dynamics, are estimated. The developed method is based on Trajectory Pattern Method (TPM). In this method, for a pattern of motion the inverse dynamics model of the system is derived in algebraic form in terms of the trajectory pattern parameters. The structure of the feedback error with feedforward signal calculated with the estimated model parameters will then be fixed, and its measurement can be used to systematically upgrade the model parameter estimation. The mathematical proof of convergence of the developed method and results of its implementation on a robot manipulator with highly non-linear dynamics are provided.


Author(s):  
Jahangir Rastegar ◽  
Dake Feng

In this paper, a new method is presented for model parameter identification of a large class of fully controlled nonlinear dynamics systems such as robot manipulators. The method uses trajectory patterns with feed-forward controls to identify model parameters of the system. The developed method ensures full system stability, does not require close initial estimated values for the parameters to be identified, and provides a systematic method of emphasizing on the estimation of the parameters associated with lower order terms of the system dynamics model and gradually upgrading the accuracy with which the model parameters, particularly those associated with the higher order terms of the system dynamics, are estimated. The developed method is based on Trajectory Pattern Method (TPM). In this method, for a pattern of motion the inverse dynamics model of the system is derived in algebraic form in terms of the trajectory pattern parameters. The structure of the feedback error with feedforward signal calculated with the estimated model parameters will then be fixed, and its measurement can be used to systematically upgrade the model parameter estimation. The mathematical proof of convergence of the developed method and results of its implementation on a robot manipulator with highly non-linear dynamics are provided.


2010 ◽  
Vol 20 (2) ◽  
pp. 59-62
Author(s):  
Patrick Einzinger ◽  
Günther Zauner ◽  
G. Ganjeizadeh-Rouhani

Systems ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 56
Author(s):  
Urmila Basu Mallick ◽  
Marja H. Bakermans ◽  
Khalid Saeed

Using Indian free-ranging dogs (FRD) as a case study, we propose a novel intervention of social integration alongside previously proposed methods for dealing with FRD populations. Our study subsumes population dynamics, funding avenues, and innovative strategies to maintain FRD welfare and provide societal benefits. We develop a comprehensive system dynamics model, featuring identifiable parameters customizable for any management context and imperative for successfully planning a widescale FRD population intervention. We examine policy resistance and simulate conventional interventions alongside the proposed social integration effort to compare monetary and social rewards, as well as costs and unintended consequences. For challenging socioeconomic ecological contexts, policy resistance is best overcome by shifting priority strategically between social integration and conventional techniques. The results suggest that social integration can financially support a long-term FRD intervention, while transforming a “pest” population into a resource for animal-assisted health interventions, law enforcement, and conservation efforts.


Sign in / Sign up

Export Citation Format

Share Document