Compositional Mapping in Dynamic Atomic Force Microscopy in High-Q vs. Low-Q Environments: Effects of Cantilever Nonlinear Dynamics

Author(s):  
John Melcher ◽  
Arvind Raman

The ability to simultaneously map variations in topography and composition (local stiffness, adhesion, charge, hydrophillicity/phobicity, viscoelasticity) of samples in ambient and liquid environments has made dynamic atomic force microscopy (dAFM) a powerful tool for nanoscale metrology. In ambient and vacuum environments, quality factors (Q-factors) of the fundamental resonance are typically large, and the contrast channels in dAFM are relatively well understood. In liquid environments, however, Q-factors are typically low due to cantilever interactions with the surrounding viscous liquid, which introduces a new class of nonlinear dynamics that is accompanied by new contrast channels, such as, higher harmonic amplitudes and phases. In particular, we find that the interpretation of the traditional contrast channels is quite different in low-Q environments compared to high-Q environments. We present a theoretical investigation of the contrast channels in dAFM in the context of frequency modulation and tapping mode dAFM with an emphasis on low-Q environments.

2017 ◽  
Vol 111 (12) ◽  
pp. 123105 ◽  
Author(s):  
E. Rull Trinidad ◽  
T. W. Gribnau ◽  
P. Belardinelli ◽  
U. Staufer ◽  
F. Alijani

Author(s):  
Soo Il Lee ◽  
Arvind Raman ◽  
Shuiqing Hu ◽  
Stephen W. Howell ◽  
Ron Reifenberger

Tapping or intermittent contact atomic force microscopy (AFM) is widely used scanning probe techniques for high resolution imaging, manipulation and nanolithography. The presence of van der Waals forces and nanoscale impacts render highly nonlinear the dynamics of the AFM microcantilever while it operates in the tapping mode. A comprehensive nonlinear analysis of the nonlinear dynamics of AFM microcantilevers tapping on a nanostructure using the theoretical and computational tools of modern nonlinear dynamics has not yet been presented. Also, a rational connection between certain features of the tip-sample interaction potential and the nonlinear response has not been established satisfactorily. To address this problem, we have combined both experimental and nonlinear computational analysis of the tapping response of a microcantilever as a function of the excitation frequency. We show that this approach enables a comprehensive understanding of the nonlinear dynamic behavior observed in AFM experiments.


Author(s):  
S. Hornstein ◽  
O. Gottlieb ◽  
L. Ioffe

The focus of this paper is on the nonlinear dynamics and control of the scan process in noncontacting atomic force microscopy. An initial-boundary-value problem is consistently formulated to include both nonlinear dynamics of a microcantilever with a localized atomic interaction force for the surface it is mapping, and a horizontal boundary condition for a constant scan speed and its control. The model considered is obtained using the extended Hamilton’s principle which yields two partial differential equations for the combined horizontal and vertical motions. Isolation of a Lagrange multiplier describing the microbeam fixed length enables construction of a modified equation of motion which is reduced to a single mode dynamical system via Galerkin’s method. The analysis includes a numerical study of the strongly nonlinear system leading to a stability map describing an escape bifurcation threshold where the tip, at the free end of the microbeam, ‘jumps-to-contact’ with the sample. Results include periodic ultrasubharmonic and quasiperiodic solutions corresponding to primary and secondary resonances.


2005 ◽  
Vol 16 (6) ◽  
pp. 966-973 ◽  
Author(s):  
Hosam G Abdelhady ◽  
Stephanie Allen ◽  
Stephen J Ebbens ◽  
Claire Madden ◽  
Nikin Patel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document