Application of a Biphasic Actuator in the Design of a Robot Gripper for Garment Handling

Author(s):  
Loan Le ◽  
Matteo Zoppi ◽  
Michal Jilich ◽  
Han Bo ◽  
Dimiter Zlatanov ◽  
...  

The paper describes a novel robot gripper for garment handling. The device has been designed, developed, prototyped, and tested within the CloPeMa European Project creating a robot system for automated manipulation of clothing and other textile items. The gripper has two degrees of freedom and includes both rigid and flexible elements. A variable-stiffness actuator has been implemented to add controlled compliance in the gripper’s operation allowing the combining of various grasping and manipulation tasks. First, we analyze the specific application-determined task requirements, focusing on the need for adaptive flexibility and the role of compliant elements in the design. The chosen solution is a simple planar mechanism, equipped with one standard and one variable-stiffness actuator. The mechanical design of the gripper, including the hydraulic system used in the biphasic actuator, is outlined, and the control architecture, using sensor feedback, is described.

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Loan Le ◽  
Matteo Zoppi ◽  
Michal Jilich ◽  
Han Bo ◽  
Dimiter Zlatanov ◽  
...  

The paper (a first version of this work was presented in Aug. 2014 at ASME-DETC in Buffalo, NY) describes a novel robot gripper for garment handling. The device has been designed, developed, prototyped, and tested within the CloPeMa European Project creating a robot system for automated manipulation of clothing and other textile items. The gripper has two degrees of freedom (dof) and includes both rigid and flexible elements. A variable-stiffness actuator has been implemented to add controlled compliance in the gripper’s operation allowing the combining of various grasping and manipulation tasks. First, we analyze the specific application-determined task requirements, focusing on the need for adaptive flexibility and the role of compliant elements in the design. The chosen solution is a simple planar mechanism, equipped with one standard and one variable-stiffness actuator. The mechanical design of the gripper, including the hydraulic system used in the biphasic actuator, is outlined, and the control architecture, using sensor feedback, is described.


Author(s):  
Yiwei Liu ◽  
Shipeng Cui ◽  
Yongjun Sun

AbstractThe safety of human-robot interaction is an essential requirement for designing collaborative robotics. Thus, this paper aims to design a novel variable stiffness actuator (VSA) that can provide safer physical human-robot interaction for collaborative robotics. VSA follows the idea of modular design, mainly including a variable stiffness module and a drive module. The variable stiffness module transmits the motion from the drive module in a roundabout manner, making the modularization of VSA possible. As the key component of the variable stiffness module, a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously, which can eliminate the additional bending moment caused by the asymmetric structure. The design of the double-deck grooves in the lever allows the pivot to move freely in the groove, avoiding the geometric constraint between the parts. Consequently, the VSA stiffness can change from zero to infinity as the pivot moves from one end of the groove to the other. To facilitate building a manipulator in the future, an expandable electrical system with a distributed structure is also proposed. Stiffness calibration and control experiments are performed to evaluate the physical performance of the designed VSA. Experiment results show that the VSA stiffness is close to the theoretical design stiffness. Furthermore, the VSA with a proportional-derivative feedback plus feedforward controller exhibits a fast response for stiffness regulation and a good performance for position tracking.


2014 ◽  
Vol 19 (2) ◽  
pp. 589-597 ◽  
Author(s):  
Stefan S. Groothuis ◽  
Giacomo Rusticelli ◽  
Andrea Zucchelli ◽  
Stefano Stramigioli ◽  
Raffaella Carloni

2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Woo Seung Ham ◽  
Abdul-Muizz Pradipto ◽  
Kay Yakushiji ◽  
Kwangsu Kim ◽  
Sonny H. Rhim ◽  
...  

AbstractDzyaloshinskii–Moriya interaction (DMI) is considered as one of the most important energies for specific chiral textures such as magnetic skyrmions. The keys of generating DMI are the absence of structural inversion symmetry and exchange energy with spin–orbit coupling. Therefore, a vast majority of research activities about DMI are mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report an asymmetric band formation in a superlattices (SL) which arises from inversion symmetry breaking in stacking order of atomic layers, implying the role of bulk-like contribution. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin–orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Our work provides more degrees of freedom to design chiral magnets for spintronics applications.


Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 17
Author(s):  
Nils Andersson

As mature neutron stars are cold (on the relevant temperature scale), one has to carefully consider the state of matter in their interior. The outer kilometre or so is expected to freeze to form an elastic crust of increasingly neutron-rich nuclei, coexisting with a superfluid neutron component, while the star’s fluid core contains a mixed superfluid/superconductor. The dynamics of the star depend heavily on the parameters associated with the different phases. The presence of superfluidity brings new degrees of freedom—in essence we are dealing with a complex multi-fluid system—and additional features: bulk rotation is supported by a dense array of quantised vortices, which introduce dissipation via mutual friction, and the motion of the superfluid is affected by the so-called entrainment effect. This brief survey provides an introduction to—along with a commentary on our current understanding of—these dynamical aspects, paying particular attention to the role of entrainment, and outlines the impact of superfluidity on neutron-star seismology.


Sign in / Sign up

Export Citation Format

Share Document