A Sequential Robust Approach for Multi-Disciplinary Design Optimization With Uncertainty

Author(s):  
Tingting Xia ◽  
Mian Li ◽  
Jianhua Zhou

The real challenge for multi-disciplinary design optimization (MDO) problems to gain a robust solution is the propagation of uncertainty from one discipline to another. Most existing methods only consider a MDO problem in deterministic manner or find a solution which is robust for a single-disciplinary optimization problem. These rare methods for solving MDO problems under uncertainty are usually computational expensive. This research proposes a robust sequential MDO (RS-MDO) approach based on a sequential MDO (S-MDO) framework. Firstly, a robust solution is obtained by giving each discipline full autonomy to perform optimization. Tolerance range is specified for the coupling variable to model uncertainty propagation in the original coupled system. Then the obtained robust extreme points of global variable and coupling variable are dispatched into subsystems to perform optimization sequentially. Additional constraints are added to keep consistency and guarantee a robust solution. To find a solution with such strict constraints, genetic algorithm (GA) is used as a solver in each optimization stage. Since all iterations in the sequential optimization stage can be processed in parallel, this robust MDO approach can be more time-saving. Numerical examples are provided to demonstrate the availability and effectiveness of proposed approach.

2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Tingting Xia ◽  
Mian Li ◽  
Jianhua Zhou

One real challenge for multidisciplinary design optimization (MDO) problems to gain a robust solution is the propagation of uncertainty from one discipline to another. Most existing methods only consider an MDO problem in the deterministic manner or find a solution which is robust for a single-disciplinary optimization problem. These rare methods for solving MDO problems under uncertainty are usually computationally expensive. This paper proposes a robust sequential MDO (RS-MDO) approach based on a sequential MDO (S-MDO) framework. First, a robust solution is obtained by giving each discipline full autonomy to perform optimization without considering other disciplines. A tolerance range is specified for each coupling variable to take care of uncertainty propagation in the coupled system. Then the obtained robust extreme points of global variables and coupling variables are dispatched into subsystems to perform robust optimization (RO) sequentially. Additional constraints are added in each subsystem to keep the consistency and to guarantee a robust solution. To find a solution with such strict constraints, genetic algorithm (GA) is used as a solver in each optimization stage. The proposed RS-MDO can save significant amount of computational efforts by using the sequential optimization procedure. Since all iterations in the sequential optimization stage can be processed in parallel, this robust MDO approach can be more time-saving. Numerical and engineering examples are provided to demonstrate the availability and effectiveness of the proposed approach.


Author(s):  
Saeed Azad ◽  
Michael J. Alexander-Ramos

Abstract Optimization of dynamic engineering systems requires an integrated approach that accounts for the coupling between embodiment design and control system design, simultaneously. Generally known as combined design and control (co-design) optimization, these methods offer superior system performance and reduced costs. Despite the widespread use of co-design approaches in the literature, not much work has been done to address the issue of uncertainty in co-design problem formulations. This is problematic as all engineering models contain some level of uncertainty that might negatively affect the systems performance, if overlooked. While in our previous study we developed a robust co-design approach, a more rigorous evaluation of probabilistic constraints is required to obtain the targeted reliability levels for probabilistic constraints. Therefore, we propose and implement a novel stochastic co-design approach based on the principles of reliability-based design optimization (RBDO). In particular, a reliability-based, multidisciplinary dynamic system design optimization (RB-MDSDO) formulation is developed using the sequential optimization and reliability assessment (SORA) algorithm, such that the dynamic equality constraints are satisfied at the mean values of random variables, as well as their most probable points (MPPs). The proposed approach is then implemented for two case studies to indicate the impact of including reliability measures in co-design formulations.


Author(s):  
Xudong Zhang ◽  
Hong-Zhong Huang ◽  
Shengkui Zeng ◽  
Zhili Wang

Reliability Based Multidisciplinary Design Optimization (RBMDO) has received increasing attention to reach high reliability and safety in complex and coupled systems. In early design of such systems, however, information is often not sufficient to construct the precise probabilistic distributions required by the RBMDO and consequently RBMDO can not be carried out effectively. The present work proposes a method of Possibility Based Multidisciplinary Design Optimization (PBMDO) within the framework of the Sequential Optimization and Reliability Assessment (PBMDO-SORA). The proposed method enables designers to solve MDO problems without sufficient information on the uncertainties associated with variables, and also to efficiently decrease the computational demand. The efficiency of the proposed method is illustrated with an engineering design.


2005 ◽  
Vol 128 (2) ◽  
pp. 503-508 ◽  
Author(s):  
Michael Kokkolaras ◽  
Zissimos P. Mourelatos ◽  
Panos Y. Papalambros

This paper presents a methodology for design optimization of hierarchically decomposed systems under uncertainty. We propose an extended, probabilistic version of the deterministic analytical target cascading (ATC) formulation by treating uncertain quantities as random variables and posing probabilistic design constraints. A bottom-to-top coordination strategy is used for the ATC process. Given that first-order approximations may introduce unacceptably large errors, we use a technique based on the advanced mean value method to estimate uncertainty propagation through the multilevel hierarchy of elements that comprise the decomposed system. A simple yet illustrative hierarchical bilevel engine design problem is used to demonstrate the proposed methodology. The results confirm the applicability of the proposed probabilistic ATC formulation and the accuracy of the uncertainty propagation technique.


2018 ◽  
Vol 15 (04) ◽  
pp. 1850018 ◽  
Author(s):  
Bao Quoc Doan ◽  
Guiping Liu ◽  
Can Xu ◽  
Minh Quang Chau

Reliability-based design optimization (RBDO) involves evaluation of probabilistic constraints which can be time-consuming in engineering structural design problems. In this paper, an efficient approach combined sequential optimization with approximate models is suggested for RBDO. The radial basis functions and Latin hypercube sampling are used to construct approximate models of the probabilistic constraints. Then, a sequential optimization with approximate models is carried out by the sequential optimization and reliability assessment method which includes a serial of cycles of deterministic optimization and reliability assessment. Three numerical examples are presented to demonstrate the efficiency of the proposed approach.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Debiao Meng ◽  
Yan-Feng Li ◽  
Hong-Zhong Huang ◽  
Zhonglai Wang ◽  
Yu Liu

The Monte Carlo simulation (MCS) can provide high reliability evaluation accuracy. However, the efficiency of the crude MCS is quite low, in large part because it is computationally expensive to evaluate a very small failure probability. In this paper, a subset simulation-based reliability analysis (SSRA) approach is combined with multidisciplinary design optimization (MDO) to improve the computational efficiency in reliability-based MDO (RBMDO) problems. Furthermore, the sequential optimization and reliability assessment (SORA) approach is utilized to decouple an RBMDO problem into a sequential of deterministic MDO and reliability evaluation problems. The formula of MDO with SSRA within the framework of SORA is proposed to solve a design optimization problem of a hydraulic transmission mechanism.


Author(s):  
Debiao Meng ◽  
Hong-Zhong Huang ◽  
Zhonglai Wang ◽  
Xiaoling Zhang ◽  
Yu Liu

The traditional Monte Carlo Simulation (MCS) approach can provide high reliability analysis accuracy, however, with low computational efficiency. Especially, it is computationally expensive to evaluate a very small failure probability. In this paper, a Subset Simulation-based Reliability Analysis (SSRA) approach is combined with the Multidisciplinary Design Optimization (MDO) to improve the computational efficiency in the Reliability based Multidisciplinary Design Optimization (RBMDO) problems. Furthermore, the Sequential Optimization and Reliability Assessment (SORA) approach is utilized to decouple the RBMDO into MDO and reliability analysis. The formula of MDO with SSRA within the framework of SORA (MDO-SSRA-SORA) is proposed to solve the design optimization problem of hydraulic transmission mechanism.


Sign in / Sign up

Export Citation Format

Share Document