scholarly journals Brass Instruments Design Using Physics-Based Sound Simulation Models and Surrogate-Assisted Derivative-Free Optimization

Author(s):  
Robin Tournemenne ◽  
Jean-François Petiot ◽  
Bastien Talgorn ◽  
Michael Kokkolaras

This paper presents a method for design optimization of brass wind instruments. The shape of a trumpet’s bore is optimized to improve intonation using a physics-based sound simulation model. This physics-based model consists of an acoustic model of the resonator (input impedance), a mechanical model of the excitator (the lips of a virtual musician) and a model of the coupling between the excitator and the resonator. The harmonic balance technique allows the computation of sounds in a permanent regime, representative of the shape of the resonator according to control parameters of the virtual musician. An optimization problem is formulated, in which the objective function to be minimized is the overall quality of the intonation of the different notes played by the instrument (deviation from the equal-tempered scale). The design variables are the physical dimensions of the resonator. Given the computationally expensive function evaluation and the unavailability of gradients, a surrogate-assisted optimization framework is implemented using the mesh adaptive direct search algorithm (MADS). Surrogate models are used both to obtain promising candidates in the search step of MADS and to rank-order additional candidates generated by the poll step of MADS. The physics-based model is then used to determine the next design iterate. Two examples (with two and five design optimization variables, respectively) are presented to demonstrate the approach. Results show that significant improvement of intonation can be achieved at reasonable computational cost. The implementation of this method for computer-aided instrument design is discussed, considering different objective functions or constraints based on intonation but also on the timbre of the instrument.

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Robin Tournemenne ◽  
Jean-François Petiot ◽  
Bastien Talgorn ◽  
Michael Kokkolaras ◽  
Joël Gilbert

This paper presents a method for design optimization of brass wind instruments. The shape of a trumpet's bore is optimized to improve intonation using a physics-based sound simulation model. This physics-based model consists of an acoustic model of the resonator, a mechanical model of the excitator, and a model of the coupling between the excitator and the resonator. The harmonic balance technique allows the computation of sounds in a permanent regime, representative of the shape of the resonator according to control parameters of the virtual musician. An optimization problem is formulated in which the objective function to be minimized is the overall quality of the intonation of the different notes played by the instrument. The design variables are the physical dimensions of the resonator. Given the computationally expensive function evaluation and the unavailability of gradients, a surrogate-assisted optimization framework is implemented using the mesh adaptive direct search algorithm (MADS). Surrogate models are used both to obtain promising candidates in the search step of MADS and to rank-order additional candidates generated by the poll step of MADS. The physics-based model is then used to determine the next design iterate. Two examples (with two and five design optimization variables) demonstrate the approach. Results show that significant improvement of intonation can be achieved at reasonable computational cost. Finally, the perspectives of this approach for computer-aided instrument design are evoked, considering optimization algorithm improvements and problem formulation modifications using for instance different design variables, multiple objectives and constraints or objective functions based on the instrument's timbre.


2015 ◽  
Vol 813-814 ◽  
pp. 1032-1036
Author(s):  
P. Sabarinath ◽  
M.R. Thansekhar ◽  
R. Jeganathan ◽  
R. Saravanan

Mechanical design engineers design products by selecting the best possible materials and geometries that satisfies the specific operational requirements of the design. It involves lot of creativity and aesthetics to make better designs. A gear design makes the designer to compromise many design variables so as to arrive the best performance of a gear set. The best possible way for multi variable, Multiobjective gear design is to try design optimization. For many complex engineering optimization problems multi objective design optimization methods are used to simplify the design problem. In this paper, multiobjective design of helical gear pair transmission with objective functions namely volume of the small and large helical gear and opposite number of overlap ratio is taken into account. The design variables considered are normal module, helix angle, gear width coefficient and teeth number of small helical gear. A recent meta-heuristic algorithm namely parameter adaptive harmony search algorithm is applied to solve this problem using the weighted sum approach. It is evident from the results that the proposed approach is performing better than other algorithms.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shujuan Wang ◽  
Qiuyang Li ◽  
Gordon J. Savage

This paper investigates the structural design optimization to cover both the reliability and robustness under uncertainty in design variables. The main objective is to improve the efficiency of the optimization process. To address this problem, a hybrid reliability-based robust design optimization (RRDO) method is proposed. Prior to the design optimization, the Sobol sensitivity analysis is used for selecting key design variables and providing response variance as well, resulting in significantly reduced computational complexity. The single-loop algorithm is employed to guarantee the structural reliability, allowing fast optimization process. In the case of robust design, the weighting factor balances the response performance and variance with respect to the uncertainty in design variables. The main contribution of this paper is that the proposed method applies the RRDO strategy with the usage of global approximation and the Sobol sensitivity analysis, leading to the reduced computational cost. A structural example is given to illustrate the performance of the proposed method.


2016 ◽  
Vol 33 (7) ◽  
pp. 2007-2018 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as EM simulation models with various levels of fidelity (coarse, medium and fine). Adaptive procedure for switching between the models of increasing accuracy in the course of the optimization process is implemented. Numerical and experimental case studies are provided to validate correctness of the design approach. Findings Appropriate combination of suitable design optimization algorithm embedded in a trust region framework, as well as model selection techniques, allows for considerable reduction of the antenna optimization cost compared to conventional methods. Research limitations/implications The study demonstrates feasibility of EM-simulation-driven design optimization of antennas at low computational cost. The presented techniques reach beyond the common design approaches based on direct optimization of EM models using conventional gradient-based or derivative-free methods, particularly in terms of reliability and reduction of the computational costs of the design processes. Originality/value Simulation-driven design optimization of contemporary antenna structures is very challenging when high-fidelity EM simulations are utilized for performance utilization of structure at hand. The proposed variable-fidelity optimization technique with adjoint sensitivity and trust regions permits rapid optimization of numerically demanding antenna designs (here, dielectric resonator antenna and compact monopole), which cannot be achieved when conventional methods are of use. The design cost of proposed strategy is up to 60 percent lower than direct optimization exploiting adjoint sensitivities. Experimental validation of the results is also provided.


2008 ◽  
Vol 32 (2) ◽  
pp. 297-312 ◽  
Author(s):  
Zhongzhe Chi ◽  
Yuping He ◽  
Greg F. Naterer

This paper presents a comparative study of three optimization algorithms, namely Genetic Algorithms (GAs), Pattern Search Algorithm (PSA) and Sequential Quadratic Program (SQP), for the design optimization of vehicle suspensions based on a quarter-vehicle model. In the optimization, the three design criteria are vertical vehicle body acceleration, suspension working space, and dynamic tire load. To implement the design optimization, five parameters (sprung mass, un-sprung mass, suspension spring stiffness, suspension damping coefficient and tire stiffness) are selected as the design variables. The comparative study shows that the global search algorithm (GA) and the direct search algorithm (PSA) are more reliable than the gradient based local search algorithm (SQP). The numerical simulation results indicate that the design criteria are significantly improved through optimizing the selected design variables. The effect of vehicle speed and road irregularity on design variables for improving vehicle ride quality has been investigated. A potential design optimization approach to the vehicle speed and road irregularity dependent suspension design problem is recommended.


Author(s):  
Jun Zhou ◽  
Zissimos P. Mourelatos

Deterministic optimal designs that are obtained without taking into account uncertainty/variation are usually unreliable. Although reliability-based design optimization accounts for variation, it assumes that statistical information is available in the form of fully defined probabilistic distributions. This is not true for a variety of engineering problems where uncertainty is usually given in terms of interval ranges. In this case, interval analysis or possibility theory can be used instead of probability theory. This paper shows how possibility theory can be used in design and presents a computationally efficient sequential optimization algorithm. After, the fundamentals of possibility theory and fuzzy measures are described, a double-loop, possibility-based design optimization algorithm is presented where all design constraints are expressed possibilistically. The algorithm handles problems with only uncertain or a combination of random and uncertain design variables and parameters. In order to reduce the high computational cost, a sequential algorithm for possibility-based design optimization is presented. It consists of a sequence of cycles composed of a deterministic design optimization followed by a set of worst-case reliability evaluation loops. Two examples demonstrate the accuracy and efficiency of the proposed sequential algorithm.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Mingyang Li ◽  
Zequn Wang

To reduce the computational cost, surrogate models have been widely used to replace expensive simulations in design under uncertainty. However, most existing methods may introduce significant errors when the training data is limited. This paper presents a confidence-driven design optimization (CDDO) framework to manage surrogate model uncertainty for probabilistic design optimization. In this study, a confidence-based Gaussian process (GP) modeling technique is developed to handle the surrogate model uncertainty in system performance predictions by taking both the prediction mean and variance into account. With a target confidence level, the confidence-based GP models are used to reduce the probability of underestimating the probability of failure in reliability assessment. In addition, a new sensitivity analysis method is proposed to approximate the sensitivity of the reliability at the target confidence level with respect to design variables, and thus facilitate the CDDO framework. Three case studies are introduced to demonstrate the effectiveness of the proposed approach.


Author(s):  
Marcus Pettersson ◽  
Johan Andersson ◽  
Petter Krus

One area in design optimization is component based design where the designer has to choose between many different discrete alternatives. These types of problems have discrete character and in order to admit optimization an interpolation between the alternatives is often performed. However, in this paper a modified version of the non-gradient algorithm the Complex method is developed where no interpolation between alternatives is needed. Furthermore, the optimization algorithm itself is optimized using a performance metric that measures the effectiveness of the algorithm. In this way the optimal performance of the proposed discrete Complex method has been identified. Another important area in design optimization is the case of optimization based on simulations. For such problems no gradient information is available, hence non-gradient methods are therefore a natural choice. The application for this paper is the design of an industrial robot where the system performance is evaluated using comprehensive simulation models. The objective is to maximize performance with constraints on lifetime and cost, and the design variables are discrete choices of gear boxes for the different axes.


2010 ◽  
Vol 118-120 ◽  
pp. 399-403 ◽  
Author(s):  
M. Xiao ◽  
Liang Gao ◽  
Hao Bo Qiu ◽  
Xin Yu Shao ◽  
Xue Zheng Chu

This paper concentrates on the computational challenge in multidisciplinary design optimization (MDO) and a comprehensive strategy combining enhanced collaborative optimization (ECO) and kriging approximation models is introduced. In this strategy, the computational and organizational advantages of original collaborative optimization (CO) are inherited by ECO, which can satisfy the strengthened consistency requirements. Kriging approximation models are constructed to replace high-fidelity simulation models in individual disciplines and reduce the expensive computational cost in practical MDO problems. The proposed methodology is demonstrated by solving the classical speed reducer design problem. The better results indicate that ECO using kriging approximation models can achieve a considerable reduction of computational expense while guaranteeing the accuracy of optimal solutions with efficient convergence.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Jun Zhou ◽  
Zissimos P. Mourelatos

Deterministic optimal designs that are obtained without taking into account uncertainty/variation are usually unreliable. Although reliability-based design optimization accounts for variation, it assumes that statistical information is available in the form of fully defined probabilistic distributions. This is not true for a variety of engineering problems where uncertainty is usually given in terms of interval ranges. In this case, interval analysis or possibility theory can be used instead of probability theory. This paper shows how possibility theory can be used in design and presents a computationally efficient sequential optimization algorithm. After the fundamentals of possibility theory and fuzzy measures are described, a double-loop, possibility-based design optimization algorithm is presented where all design constraints are expressed possibilistically. The algorithm handles problems with only uncertain or a combination of random and uncertain design variables and parameters. In order to reduce the high computational cost, a sequential algorithm for possibility-based design optimization is presented. It consists of a sequence of cycles composed of a deterministic design optimization followed by a set of worst-case reliability evaluation loops. Two examples demonstrate the accuracy and efficiency of the proposed sequential algorithm.


Sign in / Sign up

Export Citation Format

Share Document