direct search algorithm
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 71
Author(s):  
Zhiyu Xia ◽  
Zhengyi Xu ◽  
Dan Li ◽  
Jianming Wei

Chemical industrial parks, which act as critical infrastructures in many cities, need to be responsive to chemical gas leakage accidents. Once a chemical gas leakage accident occurs, risks of poisoning, fire, and explosion will follow. In order to meet the primary emergency response demands in chemical gas leakage accidents, source tracking technology of chemical gas leakage has been proposed and evolved. This paper proposes a novel method, Outlier Mutation Optimization (OMO) algorithm, aimed to quickly and accurately track the source of chemical gas leakage. The OMO algorithm introduces a random walk exploration mode and, based on Swarm Intelligence (SI), increases the probability of individual mutation. Compared with other optimization algorithms, the OMO algorithm has the advantages of a wider exploration range and more convergence modes. In the algorithm test session, a series of chemical gas leakage accident application examples with random parameters are first assumed based on the Gaussian plume model; next, the qualitative experiments and analysis of the OMO algorithm are conducted, based on the application example. The test results show that the OMO algorithm with default parameters has superior comprehensive performance, including the extremely high average calculation accuracy: the optimal value, which represents the error between the final objective function value obtained by the optimization algorithm and the ideal value, reaches 2.464e-15 when the number of sensors is 16; 2.356e-13 when the number of sensors is 9; and 5.694e-23 when the number of sensors is 4. There is a satisfactory calculation time: 12.743 s/50 times when the number of sensors is 16; 10.304 s/50 times when the number of sensors is 9; and 8.644 s/50 times when the number of sensors is 4. The analysis of the OMO algorithm’s characteristic parameters proves the flexibility and robustness of this method. In addition, compared with other algorithms, the OMO algorithm can obtain an excellent leakage source tracing result in the application examples of 16, 9 and 4 sensors, and the accuracy exceeds the direct search algorithm, evolutionary algorithm, and other swarm intelligence algorithms.


Author(s):  
Ganghai Huang ◽  
Yuanzhen Xu ◽  
Xiaofeng Chen ◽  
Jianjun Ma ◽  
Shu Zhang

The efficiency of contact search is one of the key factors related to the computational efficiency of three-dimensional sphere discontinuous deformation analysis (3D SDDA). This paper proposes an efficient contact search algorithm, called box search algorithm (BSA), for 3D SDDA. The implementation steps and data structure for BSA are designed, with a case study being conducted to verify its efficiency. The data structure also has been improved for parallelizing the computation in contact search. For the demonstration of the proposed algorithm (BSA), six cases with various sphere numbers are simulated. Simulation results show that the time consumed in contact search using BSA (CTofBSA) is much less than that by the direct search algorithm (DSA) (CTofDSA). For the case with 12,000 spheres, CTofBSA is 1.1[Formula: see text]h, which is only 1.3% of CTofDSA (84.62[Formula: see text]h). In addition, the proportion of the computation quantity of contact search in the entire computation (Pcs) is 91.3% by using DSA, while this value by BSA is only 12.4%, which demonstrates the contribution of BSA. The efficiency brought about by BSA (time consumed and computation quantity) may enable 3D SDDA to simulate large-scale problems.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1876 ◽  
Author(s):  
García-Romero ◽  
Paredes-Arquiola ◽  
Solera ◽  
Belda ◽  
Andreu ◽  
...  

Calibration of conceptual rainfall–runoff models (CRRM) for water-resource assessment (WRA) is a complicated task that contributes to the reliability of results obtained from catchments. In recent decades, the application of automatic calibration techniques has been frequently used because of the increasing complexity of models and the considerable time savings gained at this phase. In this work, the traditional Rosenbrock (RNB) algorithm is combined with a random sampling method and the Latin hypercube (LH) to optimize a multi-start strategy and test the efficiency in the calibration of CRRMs. Three models (the French rural-engineering-with-four-daily-parameters (GR4J) model, the Swedish Hydrological Office Water-balance Department (HBV) model and the Sacramento Soil Moisture Accounting (SAC-SMA) model) are selected for WRA at nine headwaters in Spain in zones prone to long and severe droughts. To assess the results, the University of Arizona’s shuffled complex evolution (SCE-UA) algorithm was selected as a benchmark, because, until now, it has been one of the most robust techniques used to solve calibration problems with rainfall–runoff models. This comparison shows that the traditional algorithm can find optimal solutions at least as good as the SCE-UA algorithm. In fact, with the calibration of the SAC-SMA model, the results are significantly different: The RNB algorithm found better solutions than the SCE-UA for all basins. Finally, the combination created between the LH and RNB methods is detailed thoroughly, and a sensitivity analysis of its parameters is used to define the set of optimal values for its efficient performance.


2019 ◽  
Vol 9 (11) ◽  
pp. 2268 ◽  
Author(s):  
Robert Piotrowski ◽  
Aleksander Paul ◽  
Mateusz Lewandowski

Authors of this paper take under investigation the optimization of biological processes during the wastewater treatment in sequencing batch reactor (SBR) plant. A designed optimizing supervisory controller generates the dissolved oxygen (DO) trajectory for the lower level parts of the hierarchical control system. Proper adjustment of this element has an essential impact on the efficiency of the wastewater treatment process as well as on the costs generated by the plant, especially by the aeration system. The main goal of the presented solution is to reduce the plant energy consumption and to maintain the quality of effluent in compliance with the water-law permit. Since the optimization is nonlinear and includes variations of different types of variables, to solve the given problem the authors performed simulation tests and decided to implement a hybrid of two different optimization algorithms: artificial bee colony (ABC) and direct search algorithm (DSA). Simulation tests for the wastewater treatment plant case study are presented.


2019 ◽  
Vol 29 (2) ◽  
pp. 1164-1189 ◽  
Author(s):  
Charles Audet ◽  
Sébastien Le Digabel ◽  
Christophe Tribes

2018 ◽  
Vol 12 (4) ◽  
pp. 675-689 ◽  
Author(s):  
Charles Audet ◽  
Amina Ihaddadene ◽  
Sébastien Le Digabel ◽  
Christophe Tribes

Sign in / Sign up

Export Citation Format

Share Document