A Single-Loop 7R Spatial Mechanism That Has Three Motion Modes With the Same Instantaneous DOF but Different Finite DOF

Author(s):  
Xianwen Kong ◽  
Andreas Müller

Multi-mode mechanisms, including kinematotropic mechanisms, are a class of reconfigurable mechanisms that can switch motion modes with the same or different DOF (degree-of-freedom). For most of the multi-mode mechanisms reported in the literature, the instantaneous (or differential) DOF and finite DOF in a motion mode are equal. In this paper, we will discuss the construction, reconfiguration analysis, and higher-order mobility analysis of a multi-mode single-loop 7R mechanism that has three motion modes with the same instantaneous DOF but different finite DOF. Firstly, the novel multi-mode single-loop 7R spatial mechanism is constructed by inserting one revolute (R) joint into a plane symmetric Bennett joint-based 6R mechanism for circular translation. The reconfiguration analysis is then carried out in the configuration space by solving a set of kinematic loop equations based on dual quaternions and the natural exponential function substitution using tools from algebraic geometry. The analysis shows that the multi-mode single-loop 7R spatial mechanism has three motion modes, including a 2-DOF planar 5R mode and two 1-DOF spatial 6R modes and can transit between each pair of motion modes through two transition configurations. The higher-order mobility analysis shows that the 7R mechanism has two-instantaneous DOF at a regular configuration of any motion mode and three instantaneous DOF in a transition configuration. The infinitesimal motions that are not tangential to finite motions are of second-order in transition configurations between 2-DOF motion mode 1 and 1-DOF motion modes 2 or 3 or first-order in transition configurations between 1-DOF motion modes 2 and 3.

Author(s):  
Jieyu Wang ◽  
Xianwen Kong

A novel construction method is proposed to construct multimode deployable polyhedron mechanisms (DPMs) using symmetric spatial RRR compositional units, a serial kinematic chain in which the axes of the first and the third revolute (R) joints are perpendicular to the axis of the second R joint. Single-loop deployable linkages are first constructed using RRR units and are further assembled into polyhedron mechanisms by connecting single-loop kinematic chains using RRR units. The proposed mechanisms are over-constrained and can be deployed through two approaches. The prism mechanism constructed using two Bricard linkages and six RRR limbs has one degree-of-freedom (DOF). When removing three of the RRR limbs, the mechanism obtains one additional 1-DOF motion mode. The DPMs based on 8R and 10R linkages also have multiple modes, and several mechanisms are variable-DOF mechanisms. The DPMs can switch among different motion modes through transition positions. Prototypes are 3D-printed to verify the feasibility of the mechanisms.


Author(s):  
Xianwen Kong

Abstract This paper deals with the construction and reconfiguration analysis of a spatial mechanism composed of four circular translation (G) joints. Two links connected by a G joint, which can be in different forms such as a planar parallelogram, translate along a circular trajectory with respect to each other. A spatial 4G mechanism, which is composed of four G joints, usually has 1-DOF (degree-of-freedom). Firstly, a 2-DOF 4G mechanism is constructed. Then a novel variable-DOF spatial 4G mechanism is constructed starting from the 2-DOF 4G mechanism using the approach based on screw theory. Finally, the reconfiguration analysis is carried out in the configuration space using dual quaternions. The analysis shows that the variable-DOF spatial 4G mechanism has one 2-DOF motion mode and one to two 1-DOF motion modes and reveals how the 4G mechanism can switch among these motion modes. By removing one link from two adjacent G joints each and two links from each of the remaining two G joints, we can obtain a queer-rectangle and a queer-parallelogram, which are the generalization of the queer-square or derivative queer-square in the literature. The approach in this paper can be extended to the analysis of other types of coupled mechanisms using cables and gears and multi-mode spatial mechanisms involving G joints.


Author(s):  
Xianwen Kong

Although kinematic analysis of conventional mechanisms is a well-documented fundamental issue in mechanisms and robotics, the emerging reconfigurable mechanisms and robots (or mechanisms and robots with multiple operation modes) require re-examining this fundamental issue. Recent advances in mathematics, especially algebraic geometry and numerical algebraic geometry, make it possible to develop an efficient method for the kinematic analysis of not only conventional mechanisms and robots but also reconfigurable mechanisms and robots. This paper first presents a method for setting up a set of kinematic loop equations for mechanisms using dual quaternions. Using this approach, a set of kinematic loop equations of a spatial mechanism is composed of six equations. The effectiveness of the proposed kinematic loop equations is then demonstrated by deriving the explicit input-output equations of a line symmetric 1-DOF (degree-of-freedom) 7R single-loop spatial mechanism, the re-configuration analysis of a novel multi-mode 1-DOF 7R spatial mechanism. In the former case, an explicit input-output equation of degree 8 is derived. In the latter case, it is found that the 7R multi-mode mechanism has three motion modes, including a planar 4R mode, an orthogonal Bricard 6R mode, and a plane symmetric 6R mode. Unlike the 7R multi-mode mechanisms in the literature, the 7R multi-mode mechanism presented in this paper does not have a 7R mode in which all the seven R joints can move simultaneously.


2021 ◽  
pp. 1-16
Author(s):  
Xianwen Kong

Abstract This paper deals with the construction and reconfiguration analysis of a spatial mechanism composed of four circular translation (G) joints. Two links connected by a G joint, which can be in different forms such as a planar parallelogram, translate along a circular trajectory with respect to each other. A spatial 4G mechanism, which is composed of four G joints, usually has 1-DOF (degree-of-freedom). Firstly, a 2-DOF spatial 4G mechanism is constructed. Then a novel variable-DOF spatial 4G mechanism is constructed starting from the 2-DOF 4G mechanism using the approach based on screw theory. Finally, the reconfiguration analysis is carried out in the configuration space using dual quaternions and tools from algebraic geometry. The analysis shows that the variable-DOF spatial 4G mechanism has one 2-DOF motion mode and one to two 1-DOF motion modes and reveals how the 4G mechanism can switch among these motion modes. By removing one link from two adjacent G joints each and two links from each of the remaining two G joints, we can obtain a queer-rectangle and a queer-parallelogram, which are the generalization of the queer-square or derivative queer-square in the literature. The approach in this paper can be extended to the analysis of other types of coupled mechanisms using cables and gears and multi-mode spatial mechanisms involving G joints.


2018 ◽  
Vol 10 (3) ◽  
Author(s):  
Xianwen Kong ◽  
Xiuyun He ◽  
Duanling Li

This paper deals with a 6R single-loop overconstrained spatial mechanism that has two pairs of revolute joints with intersecting axes and one pair of revolute joints with parallel axes. The 6R mechanism is first constructed from an isosceles triangle and a pair of identical circles. The kinematic analysis of the 6R mechanism is then dealt with using a dual quaternion approach. The analysis shows that the 6R mechanism usually has two solutions to the kinematic analysis for a given input and may have two circuits (closure modes or branches) with one or two pairs of full-turn revolute joints. In two configurations in each circuit of the 6R mechanism, the axes of four revolute joints are coplanar, and the axes of the other two revolute joints are perpendicular to the plane defined by the above four revolute joints. Considering that from one configuration of the 6R mechanism, one can obtain another configuration of the mechanism by simply renumbering the joints, the concept of two-faced mechanism is introduced. The formulas for the analysis of plane symmetric spatial triangle are also presented in this paper. These formulas will be useful for the design and analysis of multiloop overconstrained mechanisms involving plane symmetric spatial RRR triads.


Author(s):  
Xiangyu Liu ◽  
Chunyan Zhang ◽  
Cong Ni ◽  
Chenhui Lu

Purpose The purpose of this paper is to put forward a nvew reconfigurable multi-mode walking-rolling robot based on the single-loop closed-chain four-bar mechanism, and the robot can be changed to different modes according to the terrain. Design/methodology/approach Based on the topological analysis, singularity analysis, feasibility analysis, gait analysis and the motion strategy based on motor time-sharing control, the paper theoretically verified that the robot can switch between the four motion modes. Findings The robot integrates four-bar walking, self-deforming and four-bar and six-bar rolling modes. A series of simulation and prototype experiment results are presented to verify the feasibility of multiple motion modes of the robot. Originality/value The work presented in this paper provides a good theoretical basis for further exploration of multiple mode mobile robots. It is an attempt to design the multi-mode mobile robot based on single loop kinematotropic mechanisms. It is also a kind of exploration of the new unknown movement law.


2019 ◽  
Vol 8 (3) ◽  
pp. 6971-6976

The traditional Zero Velocity Updating Algorithm is being used to correct the accumulated errors of the device effectively. However, as the threshold value of the traditional Zero Velocity Updating algorithm is fixed, it is only suitable for a single motion mode. When indoor pedestrian motion includes multiple motion modes, the positioning accuracy will be greatly reduced. In this paper, we propose an adaptive Zero Velocity Updating method for multi-motion mode using half- voting Random Forest. We analysed the selection of Zero Velocity Updating threshold value for stilling, walking, running, going upstairs and downstairs for the interior pedestrian. Then we recognize pedestrian motion by Random Forest with a Half-Voting and Weighted Decision Trees. Finally according to the result of recognition adjust the threshold adaptively to determine the zero velocity intervals accurately. In order to verify the feasibility and effectiveness of the method proposed in this paper, field experiments were carried out with the inertial navigation module developed by our laboratory. The experimental results show that when indoor pedestrians perform multi-mode motion, the positioning error is 0.5m.


2017 ◽  
Vol 9 (5) ◽  
Author(s):  
Xianwen Kong

Although kinematic analysis of conventional mechanisms is a well-documented fundamental issue in mechanisms and robotics, the emerging reconfigurable mechanisms and robots pose new challenges in kinematics. One of the challenges is the reconfiguration analysis of multimode mechanisms, which refers to finding all the motion modes and the transition configurations of the multimode mechanisms. Recent advances in mathematics, especially algebraic geometry and numerical algebraic geometry, make it possible to develop an efficient method for the reconfiguration analysis of reconfigurable mechanisms and robots. This paper first presents a method for formulating a set of kinematic loop equations for mechanisms using dual quaternions. Using this approach, a set of kinematic loop equations of spatial mechanisms is composed of six polynomial equations. Then the reconfiguration analysis of a novel multimode single-degree-of-freedom (1DOF) 7R spatial mechanism is dealt with by solving the set of loop equations using tools from algebraic geometry. It is found that the 7R multimode mechanism has three motion modes, including a planar 4R mode, an orthogonal Bricard 6R mode, and a plane symmetric 6R mode. Three (or one) R (revolute) joints of the 7R multimode mechanism lose their DOF in its 4R (or 6R) motion modes. Unlike the 7R multimode mechanisms in the literature, the 7R multimode mechanism presented in this paper does not have a 7R mode in which all the seven R joints can move simultaneously.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Jieyu Wang ◽  
Xianwen Kong

A novel construction method is proposed to construct multimode deployable polyhedron mechanisms (DPMs) using symmetric spatial RRR compositional units, a serial kinematic chain in which the axes of the first and the third revolute (R) joints are perpendicular to the axis of the second R joint. Single-loop deployable linkages are first constructed using RRR units and are then assembled into polyhedron mechanisms by connecting the single-loop linkages using RRR units. The proposed mechanisms are over-constrained and can be deployed. The prism mechanism constructed using two Bricard linkages and six RRR chains has one degree-of-freedom (DOF). When removing three of the RRR chains, the mechanism will have one additional 1-DOF motion mode. The DPMs based on 8R and 10R linkages also have multiple modes, and several mechanisms have variable-DOF. The DPMs can switch among different motion modes through transition positions. Prototypes are 3D-printed to verify the feasibility of the mechanisms.


Sign in / Sign up

Export Citation Format

Share Document