Design and Prototyping of a Shape-Changing Rigid-Body Human Foot in Gait

Author(s):  
Tanner N. Rolfe ◽  
Andrew P. Murray ◽  
David H. Myszka

Traditional ankle-foot devices such as prostheses or robotic feet seek to replicate the physiological change in shape of the foot during gait using compliant mechanisms. In comparison, rigid-body feet tend to be simplistic and largely incapable of accurately representing the geometry of the human foot. Rigidbody mechanisms offer certain advantages over compliant mechanisms which may be desirable in the design of ankle-foot devices, including the ability to withstand greater loading, the ability to achieve more drastic shape-change, and the ability to be synthesized from their kinematics, allowing for realistic functionality without a priori characterization of the external loading conditions of the foot. This work focuses on applying the methodology of shape-changing kinematic synthesis to design and prototype a multi-segment rigid-body foot device capable of matching the dynamic change in shape of the human foot in gait.

Author(s):  
Kai Zhao ◽  
James P. Schmiedeler ◽  
Andrew P. Murray

This paper presents a procedure using Pseudo-Rigid-Body Models (PRBMs) to synthesize partially compliant mechanisms capable of approximating a shape change defined by a set of morphing curves in different positions. To generate a single-piece compliant mechanism, flexural pivots and flexible beams are both utilized in the mechanism. New topologies defined by compliant mechanism matrices are enumerated by modifying the components that make up a single degree-of-freedom (DOF) rigid-body mechanism. Because of the introduction of the PRBM for flexural pivots and the simplified PRBM for flexible beams, torsional springs are attached at the characteristic pivots of the 1-DOF rigid-body mechanism in order to generate a corresponding pseudo-rigid-body mechanism. A multi-objective genetic algorithm is employed to find a group of viable compliant mechanisms in the form of candidate pseudo-rigid-body mechanisms that tradeoff minimizing shape matching error with minimizing actuator energy. Since the simplified beam model is not accurate, an optimization loop is established to find the position and shape of the flexible beam using a finite link beam model. The optimal flexible beams together with the pseudo-rigid-body mechanism define the solution mechanism. The procedure is demonstrated with an example in which a partially compliant mechanism approximating two closed-curve profiles is synthesized.


Author(s):  
Pratheek Bagivalu Prasanna ◽  
Ashok Midha ◽  
Sushrut G. Bapat

Abstract Understanding the kinematic properties of a compliant mechanism has always proved to be a challenge. A concept of compliance number offered earlier emphasized the development of terminology that aided in its determination. A method to evaluate the elastic degrees of freedom associated with the flexible segments/links of a compliant mechanism using the pseudo-rigid-body model (PRBM) concept is provided. In this process, two distinct classes of compliant mechanisms are developed involving: (i) Active Compliance and (ii) Passive Compliance. Furthermore, these also aid in a better characterization of the kinematic behavior of a compliant mechanism. A more lucid interpretation of the significance of compliance number is provided. Applications of this method to both active and passive compliant mechanisms are exemplified. Finally, an experimental procedure that aids in visualizing the degrees of freedom as calculated is presented.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Kai Zhao ◽  
James P. Schmiedeler

This paper uses rigid-body mechanism topologies to synthesize fully distributed compliant mechanisms that approximate a shape change defined by a set of morphing curves in different positions. For a shape-change problem, a rigid-body mechanism solution is generated first to provide the base topology. This base topology defines a preselected design space for the structural optimization in one of two ways so as to obtain a compliant mechanism solution that is typically superior to the local minimum solutions obtained from searching more expansive design spaces. In the first strategy, the dimensional synthesis directly determines the optimal size and shape of the distributed compliant mechanism having exactly the base topology. In the second strategy, an initial mesh network established from the base topology is used to generate different topologies (in addition to the base), and an improved design domain parameterization scheme ensures that only topologies with well-connected structures are evaluated. The deformation of each generated compliant mechanism is evaluated using geometrically nonlinear finite element analysis (FEA). A two-objective genetic algorithm (GA) is employed to find a group of viable designs that trade off minimizing shape matching error with minimizing maximum stress. The procedure's utility is demonstrated with three practical examples—the first two approximating open-curve profiles of an adaptive antenna and the third approximating closed-curve profiles of a morphing wing.


2020 ◽  
pp. 1-11
Author(s):  
Xueao Liu ◽  
J. Michael McCarthy

Abstract This paper presents a design methodology for mechanisms consisting of a single continuous structure, continuum mechanisms, that blends the kinematic synthesis of rigid-body mechanisms with topology optimization for compliant mechanisms. Rather than start with a generic structure that is shaped to achieve a required force deflection task for a compliant mechanism, our approach shapes the initial structure based on kinematic synthesis of a rigid body mechanism for the required movement, then the structure is shaped using Finite Element Analysis to achieve the required force deflection relationship. The result of this approach is a continuum mechanism with the same workpiece movement as the rigid link mechanism when actuated. An example illustrates the design process to obtain an eight-bar linkage that guides its workpiece in straight-line rectilinear movement. We show that the resulting continuum mechanism provides the desired rectilinear movement. A 210 mm physical model machined from Nylon-6 is shown to achieve 21.5mm rectilinear movement with no perceived deviation from a straight-line.


Author(s):  
Judy M. Vance ◽  
Denis Dorozhkin

This manuscript outlines a novel approach to the design of compliant shape-morphing structures using constraint-based design method. Development of robust methods for designing shape-morphing structures is the focus of multiple current research projects, since the ability to modify geometric shapes of the individual system components, such as aircraft wings and antenna reflectors, provides the means to affect the performance of the corresponding mechanical systems. Of particular interest is the utilization of compliant mechanisms to achieve the desired adaptive shape change characteristics. Compliant mechanisms, as opposed to the traditional rigid link mechanisms, achieve motion guidance via the compliance and deformation of the mechanism’s members. The goal is to design a single-piece flexible structure capable of morphing a given curve or profile into a target curve or profile while utilizing the minimum number of actuators. The two primary methods prevalent in the design community at this time are the pseudo-rigid body method (PRBM) and the topological synthesis. Unfortunately these methods either tend to suffer from a poor ability to generate potential solutions (being more suitable for the analysis of existing structures) or are susceptible to overly-complex solutions. By utilizing the constraint-based design method (CBDM) we aim to address those shortcomings. The concept of CBDM has generally been confined to the Precision Engineering community and is based on the fundamental premise that all motions of a rigid body are determined by the position and orientation of the constraints (constraint topology) which are placed upon the body. Any mechanism motion path may then be defined by the proper combination of constraints. In order to apply the CBDM concepts to the design and analysis of shape-morphing compliant structures we propose a tiered design method that relies on kinematics, finite element analysis, and optimization. By discretizing the flexible element that comprises the active shape surface at multiple points in both the initial and the target configurations and treating the resulting individual elements as rigid bodies that undergo a planar or general spatial displacement we are able to apply the traditional kinematics theory to rapidly generate sets of potential solutions. The final design is then established via an FEA-augmented optimization sequence. Coupled with a virtual reality interface and a force-feedback device this approach provides the ability to quickly specify and evaluate multiple design problems in order to arrive at the desired solution.


Author(s):  
Kai Zhao ◽  
James P. Schmiedeler

This paper uses rigid-body mechanism topologies to synthesize distributed compliant mechanisms that approximate a shape change defined by a set of morphing curves in different positions. A single-actuator compliant mechanism is synthesized from a single degree-of-freedom rigid-body mechanism’s base topology in one of two ways. In one case, the base topology is directly evaluated through dimensional synthesis to determine the compliant mechanism’s optimal dimensions. In the second, the base topology establishes an initial element network for an optimization routine that determines topologies and dimensions simultaneously, and an improved design domain parameterization scheme ensures that only topologies with well-connected structures are evaluated. A multi-objective genetic algorithm is employed to search the design space, and the deformation is evaluated using geometrically nonlinear finite element analysis. The procedure’s utility is demonstrated with two practical examples — one approximating open-curve profiles of an adaptive antenna and the other closed-curve profiles of a morphing wing.


2021 ◽  
Vol 243 ◽  
pp. 02007
Author(s):  
Sara Lee Kit Yee ◽  
Lam Yeap Sheng ◽  
Tan Yong Li

The design of the canopy utilizes the conventional rigid body mechanisms which is vulnerable to the presence of backlash, friction of joints or wearing of mechanical parts which lead to short product life. Compliant mechanisms are employed to reduce these mechanical problems, owing to their zero-joint and monolithic structure. A reference design for the conventional canopy was chosen and modified through reviewing different patent designs. Six different configurations of the pseudo-rigid-body model (PRBM) were constructed, and the best configuration was selected. Kinematic synthesis with function generation was performed for the chosen PRBM using MATLAB. The obtained results from the kinematic synthesis were then used to calculate the dimensions and stresses of the flexural pivots for the compliant stretcher mechanism. Finite Element Analysis (FEA) simulation was then performed on each of the models and the obtained flexural pivot stresses were compared with that of the PRBM. This research successfully replaces all the rigid joints and links of the stretcher mechanism of the conventional canopy to form a monolithic structure of compliant stretcher mechanism.


Paleobiology ◽  
2016 ◽  
Vol 43 (1) ◽  
pp. 68-84 ◽  
Author(s):  
Bradley Deline ◽  
William I. Ausich

AbstractA priori choices in the detail and breadth of a study are important in addressing scientific hypotheses. In particular, choices in the number and type of characters can greatly influence the results in studies of morphological diversity. A new character suite was constructed to examine trends in the disparity of early Paleozoic crinoids. Character-based rarefaction analysis indicated that a small subset of these characters (~20% of the complete data set) could be used to capture most of the properties of the entire data set in analyses of crinoids as a whole, noncamerate crinoids, and to a lesser extent camerate crinoids. This pattern may be the result of the covariance between characters and the characterization of rare morphologies that are not represented in the primary axes in morphospace. Shifting emphasis on different body regions (oral system, calyx, periproct system, and pelma) also influenced estimates of relative disparity between subclasses of crinoids. Given these results, morphological studies should include a pilot analysis to better examine the amount and type of data needed to address specific scientific hypotheses.


Sign in / Sign up

Export Citation Format

Share Document