Short-Term Load Forecasting With Different Aggregation Strategies

Author(s):  
Cong Feng ◽  
Jie Zhang

Effective short-term load forecasting (STLF) plays an important role in demand-side management and power system operations. In this paper, STLF with three aggregation strategies are developed, which are information aggregation (IA), model aggregation (MA), and hierarchy aggregation (HA). The IA, MA, and HA strategies aggregate inputs, models, and forecasts, respectively, at different stages in the forecasting process. To verify the effectiveness of the three aggregation STLF, a set of 10 models based on 4 machine learning algorithms, i.e., artificial neural network, support vector machine, gradient boosting machine, and random forest, are developed in each aggregation group to predict 1-hour-ahead load. Case studies based on 2-year of university campus data with 13 individual buildings showed that: (a) STLF with three aggregation strategies improves forecasting accuracy, compared with benchmarks without aggregation; (b) STLF-IA consistently presents superior behavior than STLF based on weather data and STLF based on individual load data; (c) MA reduces the occurrence of unsatisfactory single-algorithm STLF models, therefore enhancing the STLF robustness; (d) STLF-HA produces the most accurate forecasts in distinctive load pattern scenarios due to calendar effects.

2012 ◽  
Vol 614-615 ◽  
pp. 866-869 ◽  
Author(s):  
Yu Hong Zhao ◽  
Xue Cheng Zhao ◽  
Wei Cheng

The support vector machine (SVM) has been successfully applied in the short-term load forecasting area, but its learning and generalization ability depends on a proper setting of its parameters. In order to improve forecasting accuracy, aiming at the disadvantages like man-made blindness in the parameters selection of SVM, In this paper, the chaos theory was applied to the PSO (particles swarm optimization) algorithm in order to cope with the problems such as low search speed and local optimization. Finally, we used it to optimize the support vector machines of short-term load forecasting model. Through the analysis of the daily forecasting results, it is shown that the proposed method could reduce modeling error and forecasting error of SVM model effectively and has better performance than general methods.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1093 ◽  
Author(s):  
Wei-Chiang Hong ◽  
Guo-Feng Fan

For operational management of power plants, it is desirable to possess more precise short-term load forecasting results to guarantee the power supply and load dispatch. The empirical mode decomposition (EMD) method and the particle swarm optimization (PSO) algorithm have been successfully hybridized with the support vector regression (SVR) to produce satisfactory forecasting performance in previous studies. Decomposed intrinsic mode functions (IMFs), could be further defined as three items: item A contains the random term and the middle term; item B contains the middle term and the trend (residual) term, and item C contains the middle terms only, where the random term represents the high-frequency part of the electric load data, the middle term represents the multiple-frequency part, and the trend term represents the low-frequency part. These three items would be modeled separately by the SVR-PSO model, and the final forecasting results could be calculated as A+B-C (the defined item D). Consequently, this paper proposes a novel electric load forecasting model, namely H-EMD-SVR-PSO model, by hybridizing these three defined items to improve the forecasting accuracy. Based on electric load data from the Australian electricity market, the experimental results demonstrate that the proposed H-EMD-SVR-PSO model receives more satisfied forecasting performance than other compared models.


Sign in / Sign up

Export Citation Format

Share Document