In-Plane Compressive Strength Analysis of Novel Folded Honeycomb Material

Author(s):  
Ruijun Ma ◽  
Jianguo Cai ◽  
Yutao Wang ◽  
Jian Feng

Abstract Two novel folded honeycombs with miura pattern are proposed in this paper. Geometry parameters for design process are given and explained. The in-plane compressive strength of the two proposed novel folded honeycombs has been studied by means of finite element simulation using ABAQUS. Quasi-static loading in two in-plane direction is selected to obtain the deformation and plateau stress. The unique collapse modes and plateau state are obtained and discussed. Compared with the conventional honeycombs, the in-plane strength of the two folded honeycombs is improved significantly. The negative Poisson’s ratio effect and buckling-restrained mechanism are introduced to illustrate the improvement. It is summarized that plateau stress under in-plane loading is improved with the included angle of miura pattern decrease for the local buckling is restrained. The folded auxetic honeycomb has the best in-plane strength for its presented negative Poisson’s ratio in two loading cases.

2021 ◽  
Author(s):  
Yonghui Wang ◽  
Qiang He ◽  
Yu Chen ◽  
Hang Gu ◽  
Honggen Zhou

Abstract In order to seek higher crashworthiness and energy absorption capacity, based on biological inspiration, a novel bio-inspired re-entrant honeycomb (BRH) structure with negative Poisson's ratio is designed by selecting lotus leaf vein as biological prototype. The numerical simulation model is established by the nonlinear dynamics software ABAQUS and further compared with the available reference results to verify the feasibility. The dynamic compression behavior and energy absorption capacity of two types of BRH (BRH-Ⅰ and BRH-Ⅱ) are firstly compared with conventional re-entrant honeycomb (RH). The simulation results show that BRH have better mechanical properties and energy absorption characteristics. Then, the crushing behavior of BRH-Ⅱ under different impact velocities are systematically studied. Three typical deformation modes of BRH-Ⅱ are observed through the analysis of deformation profile. The quasi-static plateau stress is closely related to the cellular structure. Based on one-dimensional shock theory, the empirical equations of dynamic plateau stress for BRH-Ⅱ with different relative densities are given by using least-square fitting. In addition, the effects of impact velocity and relative density on plateau stress and energy absorption behavior are also studied. The results show that the energy absorption capacity of BRH-Ⅱ is increased nearly six times compared with RH at the same impact velocity.


2021 ◽  
Vol 163 ◽  
pp. 107634
Author(s):  
Xiaolong Zhang ◽  
Ruilan Tian ◽  
Ziwen Zhang ◽  
Guijing Li ◽  
Wenjie Feng

2021 ◽  
pp. 109963622110204
Author(s):  
Fenglian Li ◽  
Wenhao Yuan ◽  
Chuanzeng Zhang

Based on the hyperbolic tangent shear deformation theory, free vibration and sound insulation of two different types of functionally graded (FG) honeycomb sandwich plates with negative Poisson’s ratio are studied in this paper. Using Hamilton’s principle, the vibration and vibro-acoustic coupling dynamic equations for FG honeycomb sandwich plates with simply supported edges are established. By applying the Navier’s method and fluid–solid interface conditions, the derived governing dynamic equations are solved. The natural frequencies and the sound insulation of FG honeycomb sandwich plates obtained in this work are compared with the numerical results by the finite element simulation. It is proven that the theoretical models for the free vibration and the sound insulation are accurate and efficient. Moreover, FG sandwich plates with different honeycomb cores are investigated and compared. The corresponding results show that the FG honeycomb core with negative Poisson’s ratio can yield much lower frequencies. Then, the influences of various geometrical and material parameters on the vibration and sound insulation performance are systematically analyzed.


Sign in / Sign up

Export Citation Format

Share Document