Utility Function Derived Off-Road Vehicle Path Planning

Author(s):  
Vijitashwa Pandey ◽  
Christopher Slon ◽  
Calahan Mollan ◽  
Dakota Barthlow ◽  
David Gorsich ◽  
...  

Abstract Optimal navigation of ground vehicles in an off-road setting is a challenging task. One must accurately model the properties of the terrain and reconcile it with vehicle capabilities, while simultaneously addressing mission requirements. An important part of navigation is path planning, the selection of the route a vehicle takes between the start and end points. It is often seen that, given the starting and end points for a vehicle, the optimal path that the vehicle should take varies considerably with the mission requirements. While most commonly used algorithms use a local cost function, mission requirements are typically defined over the entire run of the vehicle. Utility theoretic methods provide a normative tool to model tradeoffs over attributes (mission requirements) that the operator cares about. It is critical therefore, that preferences embedded in the utility function influence the local cost functions used. In this paper, we provide a framework for a feedback-based method to update the parameters of the local cost-function. We do so by using a geodesic-based method for path planning given the terrain inputs, followed by a physics-based simulation of a vehicle to evaluate the attributes. These attributes are then combined into a multiattribute utility function. An optimization-based approach is used to find the parameters of the cost function that maximizes this multiattribute utility. We present our approach on a vehicle navigation example over a terrain acquired from United States Geological Survey data.

2021 ◽  
Author(s):  
Chen Jiang ◽  
Yixuan Liu ◽  
Zhen Hu ◽  
Zissimos P. Mourelatos ◽  
David Gorsich ◽  
...  

Abstract Reliability-based mission planning aims to identify an optimal path for off-road autonomous ground vehicles (AGVs) under uncertain terrain environment, while satisfying specific mission mobility reliability (MMR) constraints. The evaluation of MMR during path planning poses computational challenges for practical applications. This paper presents an efficient reliability-based mission planning using an outcrossing approach that has the same computational complexity as deterministic mission planning. A Gaussian random field is employed to represent the spatially dependent uncertainty sources in the terrain environment. The latter are then used in conjunction with a vehicle mobility model to generate a stochastic mobility map. Based on the stochastic mobility map, outcrossing rate maps are generated using the outcrossing concept which is widely used in time-dependent reliability. Integration of the outcrossing rate map with a rapidly-exploring random tree (RRT*) algorithm, allows for efficient path planning of AGVs subject to MMR constraints. A reliable RRT* algorithm using the outcrossing approach (RRT*-OC) is developed to implement the proposed efficient reliability-based mission planning. Results of a case study verify the accuracy and efficiency of the proposed algorithm.


2019 ◽  
Vol 69 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Sangeetha Viswanathan ◽  
K. S. Ravichandran ◽  
Anand M. Tapas ◽  
Sellammal Shekhar

 In many of the military applications, path planning is one of the crucial decision-making strategies in an unmanned autonomous system. Many intelligent approaches to pathfinding and generation have been derived in the past decade. Energy reduction (cost and time) during pathfinding is a herculean task. Optimal path planning not only means the shortest path but also finding one in the minimised cost and time. In this paper, an intelligent gain based ant colony optimisation and gain based green-ant (GG-Ant) have been proposed with an efficient path and least computation time than the recent state-of-the-art intelligent techniques. Simulation has been done under different conditions and results outperform the existing ant colony optimisation (ACO) and green-ant techniques with respect to the computation time and path length.


2021 ◽  
pp. 1-44
Author(s):  
Yixuan Liu ◽  
Chen Jiang ◽  
Xiaoge Zhang ◽  
Zissimos P. Mourelatos ◽  
Dakota Barthlow ◽  
...  

Abstract Identifying a reliable path in uncertain environments is essential for designing reliable off-road autonomous ground vehicles (AGV) considering post-design operations. This paper presents a novel bio-inspired approach for model-based multi-vehicle mission planning under uncertainty for off-road AGVs subjected to mobility reliability constraints in dynamic environments. A physics-based vehicle dynamics simulation model is first employed to predict vehicle mobility (i.e., maximum attainable speed) for any given terrain and soil conditions. Based on physics-based simulations, the vehicle state mobility reliability in operation is then analyzed using an adaptive surrogate modeling method to overcome the computational challenges in mobility reliability analysis by adaptively constructing a surrogate. Subsequently, a bio-inspired approach called Physarum-based algorithm is used in conjunction with a navigation mesh to identify an optimal path satisfying a specific mobility reliability requirement. The developed Physarum-based framework is applied to reliability-based path planning for both a single-vehicle and multiple-vehicle scenarios. A case study is used to demonstrate the efficacy of the proposed methods and algorithms. The results show that the proposed framework can effectively identify optimal paths for both scenarios of a single and multiple vehicles. The required computational time is less than the widely used Dijkstra-based method.


Author(s):  
Venkata Sirimuvva Chirala ◽  
Saravanan Venkatachalam ◽  
Jonathon Smereka ◽  
Sam Kassoumeh

Abstract There has been unprecedented development in the field of unmanned ground vehicles (UGVs) over the past few years. UGVs have been used in many fields including civilian and military with applications such as military reconnaissance, transportation, and search and research missions. This is due to their increasing capabilities in terms of performance, power, and tackling risky missions. The level of autonomy given to these UGVs is a critical factor to consider. In many applications of multi-robotic systems like “search-and-rescue” missions, teamwork between human and robots is essential. In this paper, given a team of manned ground vehicles (MGVs) and unmanned ground vehicles (UGVs), the objective is to develop a model which can minimize the number of teams and total distance traveled while considering human-robot interaction (HRI) studies. The human costs of managing a team of UGVs by a manned ground vehicle (MGV) are based on human-robot interaction (HRI) studies. In this research, we introduce a combinatorial, multi objective ground vehicle path planning problem which takes human-robot interactions into consideration. The objective of the problem is to find: ideal number of teams of MGVs-UGVs that follow a leader-follower framework where a set of UGVs follow an MGV; and path for each team such that the missions are completed efficiently.


2021 ◽  
Author(s):  
Vijitashwa Pandey ◽  
Christopher Slon ◽  
Calahan Mollan ◽  
Dakota Barthlow ◽  
David Gorsich ◽  
...  

Author(s):  
Dakota Barthlow ◽  
Vijitashwa Pandey ◽  
David Gorsich ◽  
Paramsothy Jayakumar

Abstract Optimal navigation of wheeled or tracked vehicles through a particular off-road terrain is primarily governed by terrain properties, and the capabilities of the vehicle itself. Reconciling vehicle operation with a terrain’s trafficability, termed mobility mapping, is a complex and multi-faceted problem that involves geophysics, vehicle dynamics, optimization, meta-modeling, and statistical modeling. A mobility map in turn informs path planning, which is the process of creating optimal routes through the trafficable areas to successfully arrive at a destination. This optimality can be in the sense of the length of the path taken, energy consumption, or any other metric that the operator considers important. This paper presents a procedure that first models the terrain by including factors affecting trafficability, uses a kriging interpolator for terrain modeling, then utilizes an existing path planning algorithm to create a rough path between start and goal points. Subsequently, a differential geometry based algorithm is presented to optimize the path. In the proposed method, the height of the terrain is augmented with multiple factors beneficial or detrimental to mobility to define a composite surface, thereby simultaneously considering them in path planning. A geodesic connecting the start and goal points is then found on this composite surface. We present examples on terrains acquired from geospatial data gateway of the United States Geological Survey, showing the efficacy of the method. Comparisons with an existing approach are made and avenues for future work are also identified.


2021 ◽  
pp. 1-45
Author(s):  
Chen Jiang ◽  
Yixuan Liu ◽  
Zissimos P. Mourelatos ◽  
David Gorsich ◽  
Yan Fu ◽  
...  

Abstract Reliability-based mission planning aims to identify an optimal path for off-road autonomous ground vehicles (AGVs) under uncertain terrain environment, while satisfying specific mission mobility reliability (MMR) constraints. The evaluation of MMR during path planning poses computational challenges for practical applications. This paper presents an efficient reliability-based mission planning using an outcrossing approach that has the same computational complexity as deterministic mission planning. A Gaussian random field is employed to represent the spatially dependent uncertainty sources in the terrain environment. The latter are then used in conjunction with a vehicle mobility model to generate a stochastic mobility map. Based on the stochastic mobility map, outcrossing rate maps are generated using the outcrossing concept which is widely used in time-dependent reliability. Integration of the outcrossing rate map with a rapidly-exploring random tree (RRT*) algorithm, allows for efficient path planning of AGVs subject to MMR constraints. A reliable RRT* algorithm using the outcrossing approach (RRT*-OC) is developed to implement the proposed efficient reliability-based mission planning. Results of a case study with two scenarios verify the accuracy and efficiency of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document