outcrossing rate
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 20)

H-INDEX

38
(FIVE YEARS 2)

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Victoriano V. Casco ◽  
Rosemarie T. Tapic ◽  
Jerwin R. Undan ◽  
Anna Ma. Lourdes S. Latonio ◽  
Roel R. Suralta ◽  
...  

Abstract Background A combining ability analysis is a useful tool of plant breeders in screening and identifying promising parental lines with high potential for developing competitive rice hybrids. Also, one important factor that strongly determines the suitability of commercial utilization of hybrid rice parental lines is their extent of seed producibility. Methods In this study, the combining ability, floral biology and seed producibility of cytoplasmic male sterile (CMS) lines were investigated to identify good combiners with good seed production potential. The Line × Tester analysis was used to determine the general combining abilities (GCA) of hybrid rice parental lines, and Specific Combining Abilities (SCA) of the different hybrid combinations. A correlation analysis was also done to determine floral traits that influence the outcrossing rate of the CMS lines. There were 4 CMS lines, 6 restorer lines, 24 hybrid combinations and 1 check variety in a randomized complete block Design (RCBD) with 3 replicates. Results Results indicated that CMS lines IR79128B and IR102758B were good combiners and the most promising restorer lines were D2031-7-1-2R, Hanareumbyeo 2, and XTR036-54-10R. Based on specific combining ability test, the most promising combination was entry 10 (IR58025A/D2013-7-1-2R). It has the highest yield of 7496 kg ha−1, a high positive SCA score of 570.54, and highest standard heterosis of 12.9%. Based on floral traits, IR79128B was the most promising with a high positive GCA score of 186.93, panicle exertion rate of 74.8%, and a high outcrossing rate of 51%. There was a significant positive association between outcrossing rate, duration of floral opening, panicle exertion rate, and general combining ability. Conclusion The floral traits found to be significantly associated with outcrossing rate are useful selection criteria not only for identifying economically usable CMS lines but also for developing new and promising parental lines and hybrids. These CMS lines do not only give heterotic combinations but are also commercially producible, the two most important factors to the success of any hybrid rice breeding program.


2021 ◽  
pp. 1-45
Author(s):  
Chen Jiang ◽  
Yixuan Liu ◽  
Zissimos P. Mourelatos ◽  
David Gorsich ◽  
Yan Fu ◽  
...  

Abstract Reliability-based mission planning aims to identify an optimal path for off-road autonomous ground vehicles (AGVs) under uncertain terrain environment, while satisfying specific mission mobility reliability (MMR) constraints. The evaluation of MMR during path planning poses computational challenges for practical applications. This paper presents an efficient reliability-based mission planning using an outcrossing approach that has the same computational complexity as deterministic mission planning. A Gaussian random field is employed to represent the spatially dependent uncertainty sources in the terrain environment. The latter are then used in conjunction with a vehicle mobility model to generate a stochastic mobility map. Based on the stochastic mobility map, outcrossing rate maps are generated using the outcrossing concept which is widely used in time-dependent reliability. Integration of the outcrossing rate map with a rapidly-exploring random tree (RRT*) algorithm, allows for efficient path planning of AGVs subject to MMR constraints. A reliable RRT* algorithm using the outcrossing approach (RRT*-OC) is developed to implement the proposed efficient reliability-based mission planning. Results of a case study with two scenarios verify the accuracy and efficiency of the proposed algorithm.


2021 ◽  
Author(s):  
Chen Jiang ◽  
Yixuan Liu ◽  
Zhen Hu ◽  
Zissimos P. Mourelatos ◽  
David Gorsich ◽  
...  

Abstract Reliability-based mission planning aims to identify an optimal path for off-road autonomous ground vehicles (AGVs) under uncertain terrain environment, while satisfying specific mission mobility reliability (MMR) constraints. The evaluation of MMR during path planning poses computational challenges for practical applications. This paper presents an efficient reliability-based mission planning using an outcrossing approach that has the same computational complexity as deterministic mission planning. A Gaussian random field is employed to represent the spatially dependent uncertainty sources in the terrain environment. The latter are then used in conjunction with a vehicle mobility model to generate a stochastic mobility map. Based on the stochastic mobility map, outcrossing rate maps are generated using the outcrossing concept which is widely used in time-dependent reliability. Integration of the outcrossing rate map with a rapidly-exploring random tree (RRT*) algorithm, allows for efficient path planning of AGVs subject to MMR constraints. A reliable RRT* algorithm using the outcrossing approach (RRT*-OC) is developed to implement the proposed efficient reliability-based mission planning. Results of a case study verify the accuracy and efficiency of the proposed algorithm.


2021 ◽  
Vol 2021 (8) ◽  
pp. 083501
Author(s):  
Hong-Li Zeng ◽  
Eugenio Mauri ◽  
Vito Dichio ◽  
Simona Cocco ◽  
Rémi Monasson ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Margaux Jullien ◽  
Joëlle Ronfort ◽  
Laurène Gay

Empirical studies on natural populations of Medicago truncatula revealed selfing rates higher than 80%, but never up to 100%. Similarly, several studies of predominantly selfing species show variability in the level of residual outcrossing between populations and also between temporal samples of the same population. However, these studies measure global selfing rates at the scale of the population and we do not know whether there is intra-population variation and how outcrossing events are distributed, between genotypes, plants, flowers, or seeds. Theoretical studies predict the maintenance of residual outcrossing in highly selfing species due to environmental (e.g., pollen biology) and/or genetic determinants and decompositions of the variation in outcrossing rate using experimental data can be very informative to test these hypotheses. Here, we focus on one natural population of M. truncatula in order to describe precisely its mating system. In particular, we investigated the determinants of the selfing rate by testing for seasonal variations (environmental determinism) and variations between genotypes (genetic determinism). We measured selfing rates in maternal progenies from plants collected widely across a natural population. For each plant, we collected pods from flowers produced at the beginning and at the end of the flowering season to test for a seasonal variation in the outcrossing rate. For each collected offspring, we also estimated the likelihood that it was issued from a self-fertilization event and assessed the genetic component of variation of this mating system measure. We found a significant, albeit small, increase in outcrossing rate in progenies collected at the end [tm = 0.137 (SD = 0.025)] compared to those collected at the beginning [tm = 0.083 (0.016)] of the flowering season. A significant between genotypes variation in selfing rate was also detected, resulting in a heritability of 9% for the rate of residual outcrossing. Altogether, our work shows that despite a predominantly selfing reproductive mode, M. truncatula displays variation in residual outcrossing rate, and that this trait is likely under a complex determinism combining environmental and genetic factors. We discuss the evolutionary implications of our results for the population.


Euphytica ◽  
2020 ◽  
Vol 217 (1) ◽  
Author(s):  
Daniel von Maydell ◽  
Julia Brandes ◽  
Heike Lehnert ◽  
Wolfram Junghanns ◽  
Frank Marthe

AbstractCaraway (Carum carvi) is an economically important spice and medicinal plant of the Apiaceae family (syn. Umbelliferrae). Farmers often favor annual cultivation of caraway. However, the annual varieties, which are currently available, do not provide satisfying seed yields. Employing heterosis can be a promising approach to increase yield. Breeding of synthetic varieties utilizes heterosis and may be the method of choice for future caraway breeding. Knowledge of the outcrossing rate is important to evaluate the effectiveness of this breeding method. However, the outcrossing rate of caraway is unknown so far. We estimated the outcrossing rate of seven inbred lines under field conditions in a neighbor-balanced polycross design. For this purpose, we implemented a high-throughput genotyping system (PACE), accompanied by a high-throughput method for DNA extraction adapted to caraway. In total, more than 1300 individual plants were genotyped. We found a high variability of lines regarding outcrossing rate and other traits associated with flowering. The outcrossing rate was on average 66.5% and ranged from 51.6 to 82%. We discussed implications of our findings on the targeted breeding method.


2020 ◽  
pp. 1-36
Author(s):  
Qiangqiang Zhao ◽  
Junkang Guo ◽  
Dingtang Zhao ◽  
Dewen Yu ◽  
Jun Hong

Abstract Time-dependent system kinematic reliability of robotic manipulators, referring to the probability of the end-effector’s pose error falling into the specified safe boundary over the whole motion input, is of significant importance for its work performance. However, investigations regarding this issue are quite limited. Therefore, this work conducts time-dependent system kinematic reliability analysis defined with respect to the pose error for robotic manipulators based on the first-passage method. Central to the proposed method is to calculate the outcrossing rate. Given that the errors in robotic manipulators are very small, the closed-form solution to the covariance of the joint distribution of the pose error and its derivative is first derived by means of the Lie group theory. Then, by decomposing the outcrossing event of the pose error, calculating the outcrossing rate is transformed into a problem of determining the first-order moment of a truncated multivariate Gaussian. Then, based on the independent assumption that the outcrossing events occur independently, the analytical formula of the outcrossing rate is deduced for the stochastic kinematic process of robotic manipulators via taking advantage of the moment generating function of the multivariate Gaussian, accordingly leading to achievement of the time-dependent system kinematic reliability. Finally, a 6-DOF robotic manipulator is used to demonstrate the effectiveness of the proposed method by comparison with the Monte Carlo simulation and finite-difference based outcrossing rate method.


Sign in / Sign up

Export Citation Format

Share Document