New Higher Order Numeric Quadratures for Regular or Singular Functions on an Interval: Applications for the Helmholtz Integral Equation

Author(s):  
Philippe Helluy ◽  
Sylvain Maire ◽  
Patrice Ravel

Abstract A high order integration method is presented for regular or singular integrands over an integral. This method appears to be very useful to compute the integrals of the green function in the numerical resolution of boundary integral equations.

The question of non-uniqueness in boundary integral equation formu­lations of exterior problems for the Helmholtz equation has recently been resolved with the use of additional radiating multipoles in the definition of the Green function. The present note shows how this modification may be included in a rigorous formalism and presents an explicit choice of co­efficients of the added terms that is optimal in the sense of minimizing the least-squares difference between the modified and exact Green functions.


1984 ◽  
Vol 51 (3) ◽  
pp. 574-580 ◽  
Author(s):  
J. T. Katsikadelis ◽  
A. E. Armena`kas

In this investigation the boundary integral equation (BIE) method with numerical evaluation of the boundary integral equations is developed for analyzing clamped plates of any shape resting on an elastic foundation. A numerical technique for the solution to the boundary integral equations is presented and numerical results are obtained and compared with those existing from analytical solutions. The effectiveness of the BIE method is demonstrated.


2017 ◽  
Vol 743 ◽  
pp. 158-161
Author(s):  
Andrey Petrov ◽  
Sergey Aizikovich ◽  
Leonid A. Igumnov

Problems of wave propagation in poroelastic bodies and media are considered. The behavior of the poroelastic medium is described by Biot theory for partially saturated material. Mathematical model is written in term of five basic functions – elastic skeleton displacements, pore water pressure and pore air pressure. Boundary element method (BEM) is used with step method of numerical inversion of Laplace transform to obtain the solution. Research is based on direct boundary integral equation of three-dimensional isotropic linear theory of poroelasticity. Green’s matrices and, based on it, boundary integral equations are written for basic differential equations in partial derivatives. Discrete analogue are obtained by applying the collocation method to a regularized boundary integral equation. To approximate the boundary consider its decomposition to a set of quadrangular and triangular 8-node biquadratic elements, where triangular elements are treated as singular quadrangular. Every element is mapped to a reference one. Interpolation nodes for boundary unknowns are a subset of geometrical boundary-element grid nodes. Local approximation follows the Goldshteyn’s generalized displacement-stress matched model: generalized boundary displacements are approximated by bilinear elements whereas generalized tractions are approximated by constant. Integrals in discretized boundary integral equations are calculated using Gaussian quadrature in combination with singularity decreasing and eliminating algorithms.


2006 ◽  
Vol 306-308 ◽  
pp. 465-470 ◽  
Author(s):  
Kuang-Chong Wu

A novel integral equation method is developed in this paper for the analysis of two-dimensional general piezoelectric cracked bodies. In contrast to the conventional boundary integral methods based on reciprocal work theorem, the present method is derived from Stroh’s formalism for anisotropic elasticity in conjunction with Cauchy’s integral formula. The proposed boundary integral equations contain generalized boundary displacement (displacements and electric potential) gradients and generalized tractions (tractions and electric displacement) on the non-crack boundary, and the generalized dislocations on the crack lines. The boundary integral equations can be solved using Gaussian-type integration formulas without dividing the boundary into discrete elements. The crack-tip singularity is explicitly incorporated and the generalized intensity factors can be computed directly. Numerical examples of generalized stress intensity factors are given to illustrate the effectiveness and accuracy of the present method.


2021 ◽  
Vol 83 (1) ◽  
pp. 76-86
Author(s):  
A.A. Belov ◽  
A.N. Petrov

The application of non-classical approach of the boundary integral equation method in combination with the integral Laplace transform in time to anisotropic elastic wave modeling is considered. In contrast to the classical approach of the boundary integral equation method which is successfully implemented for solving three-dimensional isotropic problems of the dynamic theory of elasticity, viscoelasticity and poroelasticity, the alternative nonclassical formulation of the boundary integral equations method is presented that employs regular Fredholm integral equations of the first kind (integral equations on a plane wave). The construction of such boundary integral equations is based on the structure of the dynamic fundamental solution. The approach employs the explicit boundary integral equations. The inverse Laplace transform is constructed numerically by the Durbin method. A numerical solution of the dynamic problem of anisotropic elasticity theory based on the boundary integral equations method in a nonclassical formulation is presented. The boundary element scheme of the boundary integral equations method is built on the basis of a regular integral equation of the first kind. The problem is solved in anisotropic formulation for the load acting along the normal in the form of the Heaviside function on the cube face weakened by a cubic cavity. The obtained boundary element solutions are compared with finite element solutions. Numerical results prove the efficiency of using boundary integral equations on a single plane wave in solving three-dimensional anisotropic dynamic problems of elasticity theory. The convergence of boundary element solutions is studied on three schemes of surface discretization. The achieved calculation accuracy is not inferior to the accuracy of boundary element schemes for classical boundary integral equations. Boundary element analysis of solutions for a cube with and without a cavity is carried out.


Author(s):  
Yujie Liu ◽  
Jeffrey M. Falzarano

Multibody operations are routinely performed in offshore activities. One classical example is the FLNG and LNGC side-by-side offloading case. To understand the phenomenon occurring inside the gap is of growing interest to the offshore industry. One important issue is the existence of the irregular frequency effect. The effect can be confused with the physical resonance. Thus it needs to be removed. An extensive survey of the previous approaches to the irregular frequency problem has been undertaken. The matrix formulated in the boundary integral equations will become nearly singular for some frequencies. The existence of numerical round-off errors will make the matrix still solvable by a direct solver, however will result in unreasonably large values in some aspects of the solution, namely the irregular frequency effect. The removal of the irregular effect is important especially for multi-body hydrodynamic analysis in identifying the physical resonances caused by the configuration of floaters. This paper will mainly discuss the lid method on the internal free surface. To reach a higher accuracy, the singularity resulting from the Green function needs special care. Each term in the wave Green function will be evaluated using the corresponding analysis methods. Specifically, an analytical integral method is proposed to treat the log singularity. Finally, results with and without irregular frequency removal will be shown to demonstrate the effectiveness of our proposed method. The validation cases include mini-boxbarge, boxbarge and cylindrical dock, which has apparent irregular frequency effect in their output results.


2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Arif A. M. Yunus ◽  
Ali H. M. Murid ◽  
Mohamed M. S. Nasser

We present a boundary integral equation method for conformal mapping of unbounded multiply connected regions onto five types of canonical slit regions. For each canonical region, three linear boundary integral equations are constructed from a boundary relationship satisfied by an analytic function on an unbounded multiply connected region. The integral equations are uniquely solvable. The kernels involved in these integral equations are the modified Neumann kernels and the adjoint generalized Neumann kernels.


Author(s):  
I. G. Graham ◽  
Y. Yan

We wish to correct a minor error in the recent paper [2]. That paper was concerned with an integral equation defined on a closed polygon Γ with r corners at the points x0, x2, …, x2r = x0. We parameterized Γ using a mapping γ:[−π,π] → Γ defined as follows. For each l, introduce the mid-point x2l−1 of the side joining x2l—2 to x2l. Then introduce 2r + 1 points in parameter spacewith the property that for each j = 1, …, 2rwhere mj are integers and . Then γ(s) is defined byfor j = 1, …, 2r. The {Sj} are then the preimages of the {xj} under γ. Moreover, in view of (1), a family of uniform meshes can be constructed on [−π, π] which include {Sj} as the break-points. Then γ maps these to meshes which are uniform on each segment joining xj−1 to xj (which we denote Γj). These meshes are used to discretize the integral equation.


Sign in / Sign up

Export Citation Format

Share Document