scholarly journals An MRI Compatible Brain Probe for Signal Recording and Deep Brain Stimulation

Author(s):  
Corey Cruttenden ◽  
Mahdi Ahmadi ◽  
Xiao-Hong Zhu ◽  
Wei Chen ◽  
Rajesh Rajamani

Electrical stimulation of neural tissue is a promising therapy for a variety of neurological diseases. For example, electrical stimulation of deep thalamic nuclei has been used extensively to treat symptoms of Parkinson’s disease, and there is growing interest in treating other conditions including epilepsy and depression with similar techniques. However, the mechanisms of electrical brain stimulation for disease therapy are not fully understood [1].

2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


2009 ◽  
Vol 110 (6) ◽  
pp. 1271-1273 ◽  
Author(s):  
Damianos E. Sakas ◽  
Ioannis G. Panourias ◽  
Efstathios J. Boviatsis ◽  
Marios S. Themistocleous ◽  
Lambis C. Stavrinou ◽  
...  

Deep brain stimulation of the globus pallidus internus has been shown to be beneficial in a small number of patients suffering from axial dystonias. However, it has not yet been reported as an effective treatment for the alleviation of idiopathic head drop. The authors describe a 49-year-old woman with idiopathic cervical dystonia (camptocephalia) who was unable to raise her head > 30° when standing or sitting; her symptoms would abate when lying down. This disabling neurological condition was treated successfully with bilateral chronic electrical stimulation of the globus pallidus internus.


2015 ◽  
Vol 2 (3) ◽  
Author(s):  
Nasrin Mehranfard ◽  
Seyed Shahabeddin Sadr ◽  
Gholam Hossein Meftahi ◽  
Zahra Bahari ◽  
Maedeh Ghasemi ◽  
...  

2016 ◽  
Vol 116 (6) ◽  
pp. 2869-2881 ◽  
Author(s):  
Stefan Kammermeier ◽  
Damien Pittard ◽  
Ikuma Hamada ◽  
Thomas Wichmann

Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs.


2008 ◽  
Vol 108 (1) ◽  
pp. 132-138 ◽  
Author(s):  
Hiroki Toda ◽  
Clement Hamani ◽  
Adrian P. Fawcett ◽  
William D. Hutchison ◽  
Andres M. Lozano

Object To examine the influence of deep brain stimulation on hippocampal neurogenesis in an adult rodent model. Methods Rats were anesthetized and treated for 1 hour with electrical stimulation of the anterior nucleus of the thalamus (AN) or sham surgery. The animals were injected with 5′-bromo-2′-deoxyuridine (BrdU) 1–7 days after surgery and killed 24 hours or 28 days later. The authors counted the BrdU-positive cells in the dentate gyrus (DG) of the hippocampus. To investigate the fate of these cells, they also stained sections for doublecortin, NeuN, and GFAP and analyzed the results with confocal microscopy. In a second set of experiments they assessed the number of DG BrdU-positive cells in animals treated with corticosterone (a known suppressor of hippocampal neurogenesis) and sham surgery, corticosterone and AN stimulation, or vehicle and sham surgery. Results Animals receiving AN high-frequency stimulation (2.5 V, 90 μsec, 130 Hz) had a 2- to 3-fold increase in the number of DG BrdU-positive cells compared with nonstimulated controls. This increase was not seen with stimulation at 10 Hz. Most BrdU-positive cells assumed a neuronal cell fate. As expected, treatment with corticosterone significantly reduced the number of DG BrdU-positive cells. This steroid-induced reduction of neurogenesis was reversed by AN stimulation. Conclusions High-frequency stimulation of the AN increases the hippocampal neurogenesis and restores experimentally suppressed neurogenesis. Interventions that increase hippocampal neurogenesis have been associated with enhanced behavioral performance. In this context, it may be possible to use electrical stimulation to treat conditions associated with impairment of hippocampal function.


2008 ◽  
Vol 78 (2-3) ◽  
pp. 117-123 ◽  
Author(s):  
Clement Hamani ◽  
Mojgan Hodaie ◽  
Jason Chiang ◽  
Martin del Campo ◽  
Danielle M. Andrade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document