Fuel Efficient Control Strategies for Connected Hybrid Electric Vehicles in Urban Roads

Author(s):  
Runing Lin ◽  
Baisravan HomChaudhuri ◽  
Pierluigi Pisu

This paper presents a fuel efficient control strategy for a group of connected hybrid electric vehicles (HEVs) in urban road conditions. A hierarchical control architecture is proposed in this paper where the higher level controller is considered to be a part of the transportation infrastructure while the lower level controllers are considered to be present in every HEV. The higher level controller uses model predictive control strategy to evaluate the energy efficient velocity profiles for every vehicle for a given horizon. Each lower level controller then tracks its velocity profile (obtained from the higher level controller) in a fuel efficient fashion using equivalent consumption minimization strategy (ECMS). In this paper, the vehicles are modeled in Autonomie software and the simulation results provided in the paper shows the effectiveness of our proposed control architecture.

2011 ◽  
Vol 130-134 ◽  
pp. 2211-2215
Author(s):  
Bing Zhan Zhang ◽  
Han Zhao ◽  
An Dong Yin

Control strategy is the most important issue in the Plug-in Hybrid electric vehicles (PHEV) design, which has two modes: charge depleting mode (CD) and charge sustaining mode (CS). The different control strategies in depleting mode will have a great influence on PHEV dynamic performance and fuel economy. The engine optimal torque control strategy was proposed in the paper. The vehicle simulation model in Powertrain Systems Analysis Toolkit (PSAT) was adopted to evaluate the proposed control strategy. The aggressive highway drive cycle Artemis_hwy and a random drive cycle generated by Markov Process were used. The simulation results indicate the proposed control strategy has great improvement in fuel economy.


Sign in / Sign up

Export Citation Format

Share Document