Complete Dynamic Modelling of Flexible Joint Robots

Author(s):  
Yu Zhao ◽  
Cong Wang ◽  
Xiaowen Yu ◽  
Masayoshi Tomizuka

Joint flexibility is common in industrial robots that have geared joints. In order to design a precision motion controller that compensates the effects of joint elasticity, an accurate dynamic model of flexible joint robots is required. The models that are commonly used ignore the gyroscopic interactions between the motors and links. In order to evaluate the influence of the ignored gyroscopic interaction, a complete dynamic model for flexible joint robots is derived in this paper. It is shown that when to realize high accuracy for high velocity trajectory tracking, the motor inertia is non-negligible compared to link inertia, and that the neglected interaction terms must be taken into account.

2020 ◽  
Vol 10 (14) ◽  
pp. 4895
Author(s):  
Ping Zhang ◽  
Yuwen Li

Structural vibration is a significant consideration for robotic applications such as machining where the robot is subject to large dynamic loading. Aiming at providing an efficient means to evaluating the vibration characteristics of industrial robots for these applications, this work proposes two new indices to quantify the elastic displacement of the tool mounted on the robot caused by the vibrations induced by external process loading for flexible-joint robots. For this purpose, a structural dynamic model is first developed to derive the frequency responses of the tool displacement. Then, the displacement-force and displacement-torque frequency response ratios are defined, which represent the mapping from the amplitudes of an external harmonic force and torque to the amplitude of tool displacement respectively. The upper bounds of the two ratios are used as evaluation indices for the vibration characteristics of the robot, which represent the worst situation of the tool displacement due to harmonic excitation with amplitude of unit force and unit torque respectively. With these indices, an efficient method is provided to predict whether the tool misalignment caused by periodic loading is acceptable for process quality requirement. Numerical simulation demonstrates the effectiveness of the proposed method for a robotic riveting system being developed for aerospace assembly.


2019 ◽  
Vol 16 (1) ◽  
pp. 172988141882521 ◽  
Author(s):  
Hepeng Ni ◽  
Chengrui Zhang ◽  
Tianliang Hu ◽  
Teng Wang ◽  
Qizhi Chen ◽  
...  

Considering the joint elasticity, a novel dynamic parameter identification method is proposed for general industrial robots only with motor encoders. Firstly, the unknown parameters of the elastic joint dynamic model are analyzed and divided into two types. The first type is the motion-independent parameter only including the joint stiffness, which can be identified by the static force/torque-deformation experiments without the dynamic model. The second type is the motion-dependent parameter composed of the rest of the parameters, which needs the dynamic excitation experiments. Therefore, these two types of parameters can be identified separately. Meanwhile, it is found that the rotor inertia parameters can be obtained from the manufacturer, which reduces the identification difficulty of other parameters. After obtaining the rotor inertia and joint stiffness, an approximate processing algorithm is proposed considering the motor friction to establish the linear identification model of other parameters. Hence, the least squares can be employed to identify the parameters, and the independence of the inertia and joint viscous friction parameters are not affected. Meanwhile, the exciting trajectories can be optimized throughout the robot workspace, which reduces the effect of measurement noise on identification accuracy. With the proposed separated identification strategy and approximate processing algorithm, the dynamic parameters can be obtained precisely without double encoders on each joint. Finally, a series of simulations are conducted to evaluate the good performance of the proposed method.


Author(s):  
Sanaz Bazaz Behbahani ◽  
Xiaobo Tan

In this paper, we propose a novel design for a pectoral fin joint of a robotic fish. This joint uses a flexible part to enable the rowing pectoral fin to feather passively and thus reduce the hydrodynamic drag in the recovery stroke. On the other hand, a mechanical stopper allows the fin to maintain its motion prescribed by the servomotor in the power stroke. The design results in net thrust even when the fin is actuated symmetrically for the power and recovery strokes. A dynamic model for this joint and for a pectoral fin-actuated robotic fish involving such joints is presented. The pectoral fin is modeled as a rigid plate connected to the servo arm through a pair of torsional spring and damper that describes the flexible joint. The hydrodynamic force on the fin is evaluated with blade element theory, where all three components of the force are considered due to the feathering degree of freedom of the fin. Experimental results on robotic fish prototype are provided to support the effectiveness of the design and the presented dynamic model. We utilize three different joints (with different sizes and different flexible materials), produced with a multi-material 3D printer, and measure the feathering angles of the joints and the forward swimming velocities of the robotic fish. Good match between the model predictions and experimental data is achieved, and the advantage of the proposed flexible joint over a rigid joint, where the power and recovery strokes have to be actuated at different speeds to produce thrust, is demonstrated.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Mohammad Ali Badamchizadeh ◽  
Iraj Hassanzadeh ◽  
Mehdi Abedinpour Fallah

Robust nonlinear control of flexible-joint robots requires that the link position, velocity, acceleration, and jerk be available. In this paper, we derive the dynamic model of a nonlinear flexible-joint robot based on the governing Euler-Lagrange equations and propose extended and unscented Kalman filters to estimate the link acceleration and jerk from position and velocity measurements. Both observers are designed for the same model and run with the same covariance matrices under the same initial conditions. A five-bar linkage robot with revolute flexible joints is considered as a case study. Simulation results verify the effectiveness of the proposed filters.


Sign in / Sign up

Export Citation Format

Share Document