Design and Dynamic Modeling of a Flexible Feathering Joint for Robotic Fish Pectoral Fins

Author(s):  
Sanaz Bazaz Behbahani ◽  
Xiaobo Tan

In this paper, we propose a novel design for a pectoral fin joint of a robotic fish. This joint uses a flexible part to enable the rowing pectoral fin to feather passively and thus reduce the hydrodynamic drag in the recovery stroke. On the other hand, a mechanical stopper allows the fin to maintain its motion prescribed by the servomotor in the power stroke. The design results in net thrust even when the fin is actuated symmetrically for the power and recovery strokes. A dynamic model for this joint and for a pectoral fin-actuated robotic fish involving such joints is presented. The pectoral fin is modeled as a rigid plate connected to the servo arm through a pair of torsional spring and damper that describes the flexible joint. The hydrodynamic force on the fin is evaluated with blade element theory, where all three components of the force are considered due to the feathering degree of freedom of the fin. Experimental results on robotic fish prototype are provided to support the effectiveness of the design and the presented dynamic model. We utilize three different joints (with different sizes and different flexible materials), produced with a multi-material 3D printer, and measure the feathering angles of the joints and the forward swimming velocities of the robotic fish. Good match between the model predictions and experimental data is achieved, and the advantage of the proposed flexible joint over a rigid joint, where the power and recovery strokes have to be actuated at different speeds to produce thrust, is demonstrated.

Robotica ◽  
2019 ◽  
Vol 38 (4) ◽  
pp. 699-718 ◽  
Author(s):  
Van Anh Pham ◽  
Tan Tien Nguyen ◽  
Byung Ryong Lee ◽  
Tuong Quan Vo

SUMMARYBiological fish can create high forward swimming speed due to change of thrust/drag area of pectoral fins between power stroke and recovery stroke in rowing mode. In this paper, we proposed a novel type of folding pectoral fins for the fish robot, which provides a simple approach in generating effective thrust only through one degree of freedom of fin actuator. Its structure consists of two elemental fin panels for each pectoral fin that connects to a hinge base through the flexible joints. The Morison force model is adopted to discover the relationship of the dynamic interaction between fin panels and surrounding fluid. An experimental platform for the robot motion using the pectoral fin with different flexible joints was built to validate the proposed design. The results express that the performance of swimming velocity and turning radius of the robot are enhanced effectively. The forward swimming velocity can reach 0.231 m/s (0.58 BL/s) at the frequency near 0.75 Hz. By comparison, we found an accord between the proposed dynamic model and the experimental behavior of the robot. The attained results can be used to design controllers and optimize performances of the robot propelled by the folding pectoral fins.


2016 ◽  
Vol 2016 ◽  
pp. 1-22 ◽  
Author(s):  
Ningyu Li ◽  
Yumin Su

Numerical simulations are carried out to study the fluid dynamics of a complex-shaped low-aspect-ratio pectoral fin that performs the labriform swimming. Simulations of flow around the fin are achieved by a developed immersed boundary (IB) method, in which we have proposed an efficient local flow reconstruction algorithm with enough robustness and a new numerical strategy with excellent adaptability to deal with complex moving boundaries involved in bionic flow simulations. The prescribed fin kinematics in each period consists of the power stroke and the recovery stroke, and the simulations indicate that the former is mainly used to provide the thrust while the latter is mainly used to provide the lift. The fin wake is dominated by a three-dimensional dual-ring vortex wake structure where the partial power-stroke vortex ring is linked to the recovery-stroke ring vertically. Moreover, the connection of force production with the fin kinematics and vortex dynamics is discussed in detail to explore the propulsion mechanism. We also conduct a parametric study to understand how the vortex topology and hydrodynamic characteristics change with key parameters. The results show that there is an optimal phase angle and Strouhal number for this complicated fin. Furthermore, the implications for the design of a bioinspired pectoral fin are discussed based on the quantitative hydrodynamic analysis.


Author(s):  
Hongwei Ma ◽  
Yueri Cai ◽  
Yuliang Wang ◽  
Shusheng Bi ◽  
Zhao Gong

Purpose The paper aims to develop a cownose ray-inspired robotic fish which can be propelled by oscillating and chordwise twisting pectoral fins. Design/methodology/approach The bionic pectoral fin which can simultaneously realize the combination of oscillating motion and chordwise twisting motion is designed based on analyzing the movement of cownose ray’s pectoral fins. The structural design and control system construction of the robotic fish are presented. Finally, a series of swimming experiments are carried out to verify the effectiveness of the design for the bionic pectoral fin. Findings The experimental results show that the deformation of the bionic pectoral fin can be well close to that of the cownose ray’s. The bionic pectoral fin can produce effective angle of attack, and the thrust generated can propel robotic fish effectively. Furthermore, the tests of swimming performance in the water tank show that the robotic fish can achieve a maximum forward speed of 0.43 m/s (0.94 times of body length per second) and an excellent turning maneuverability with a small radius. Originality/value The oscillating and pitching motion can be obtained simultaneously by the active control of chordwise twisting motion of the bionic pectoral fin, which can better imitate the movement of cownose ray’s pectoral fin. The designed bionic pectoral fin can provide an experimental platform for further study of the effect of the spanwise and chordwise flexibility on propulsion performance.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongwei Ma ◽  
Shuai Ren ◽  
Junxiang Wang ◽  
Hui Ren ◽  
Yang Liu ◽  
...  

Purpose This paper aims to carry out the research on the influence of ground effect on the performance of robotic fish propelled by oscillating paired pectoral fins. Design/methodology/approach The two-dimensional ground effect model of the oscillating pectoral fin without considering flexible deformation is established by introducing a two-dimensional fluid ground effect model. The parameters of the influence of ground effect on the oscillating pectoral fin are analyzed. Finally, the ground effect test platform is built, and a series of hydrodynamic experiments are carried out to study the influence of ground effect on the propulsion performance of the robotic fish propelled by oscillating paired pectoral fins under different motion parameters. Findings The thickness of the trailing edge and effective clearance are two important parameters that can change the influence of ground effect on the rigid pectoral fin. The experimental results are consistent with that obtained through theoretical analysis within a certain extent, which indicates that the developed two-dimensional ground effect model in this paper can be used to analyze the influence of ground effect on the propulsion performance of the oscillating pectoral fin. The experiment results show that the average thrust increases with the decreasing distance between the robot fish and the bottom. Meanwhile, with the increase of oscillation frequency and amplitude, the average thrust increases gradually. Originality/value The developed two-dimensional ground effect model provides the theoretical basis for the further research on the influence of ground effect on the propulsion performance of the oscillating pectoral fin. It can also be used in the design of the bionic pectoral fins.


1979 ◽  
Vol 82 (1) ◽  
pp. 255-271
Author(s):  
R. W. BLAKE

1. A blade-element approach is used to analyse the mechanics of the drag-based pectoral fin power stroke in an Angelfish in steady forward, rectilinear progression. 2. Flow reversal occurs at the base of the fin at the beginning and at the end of the power stroke. Values for the rate of increase and decrease in the relative velocity of the blade-elements increase distally, as do such values for hydrodynamical angle of attack. At the beginning and end of the power stroke, negative angles occur at the base of the fin. 3. The outermost 40% of the fin produces over 80% of the total thrust produced during the power stroke, and doe8 over 80% of the total work. Small amounts of reversed thrust are produced at the base of the fin during the early and late parts of the stroke. 4. The total amount of energy required during a cycle to drag the body and inactive fins through the water is calculated to be approximately 2.8 × 10−6 J and the total energy produced by the fins over the cycle (ignoring the recovery stroke) which is associated with producing the hydrodynamic thrust force, is about 1.0 × 10−5 J; which gives a propulsive efficiency of about 0.26. 5. The energy required to move the mass of a pectoral fin during the power stroke is calculated to be approximately 2.6 × 10−7 J. Taking this into account reduces the value of the propulsive efficiency by about 4% to about 0.25. The total energy needed to accelerate and decelerate the added mass associated with the fin is calculated and added to the energy required to produce the hydrodynamic thrust force and the energy required to move the mass of the fins; giving a final propulsive efficiency of 0.18.


2019 ◽  
Vol 1 (7) ◽  
Author(s):  
Navinder Singh ◽  
Ankur Gupta ◽  
Sujoy Mukherjee

2014 ◽  
Vol 620 ◽  
pp. 502-507
Author(s):  
Yang Wei Wang ◽  
Bao Tong Gu ◽  
Jin Bo Tan ◽  
Peng Fei Sang

Stingrays have expanded and highly flexible pectoral fins that extend over the entire length of their body. Locomotion is controlled by modulations of the undulating fin surface which produce steady swimming, acceleration, or complex maneuvers. In this paper, a robotic fish inspired by stingray was presented. Structure of the biomimetic prototype and layout of the control system were illustrated. In order to mimic the undulations, parameters of the biomimetic pectoral fin need to be accurately controlled including frequency, amplitude, wavelength, and undulatory mode. Several control strategies were proposed to realize different kinds of locomotion. Lastly, swimming experiments were carried out in the water tank according to the control methods. Experiment results demonstrate the viability of our methods.


2021 ◽  
Author(s):  
Liyang Gao ◽  
Peng Li ◽  
Hongde Qin ◽  
Zhongchao Deng

Abstract In this paper, mechatronic design of a novel robotic shark for coral reef detection is presented. To obtain good maneuverability, a barycenter regulating device is designed to assist the posture adjustment of the robotic shark at low speed. Based on STAR-CCM+ software, the lift coefficients and drag coefficients of pectoral fin are calculated using overlapping grid technique. Based on Newton-Euler approach, a dynamic model with particular consideration of pectoral fins for three-dimensional motion is established. A CPG controller is used to generate rhythmic motion of each joint. Furthermore, based on the dynamic model, three-dimensional trajectory of spiral motion and swimming speed in different oscillation parameters are simulated. The results show that swimming speed of the robotic shark can be improved by increasing the amplitude and frequency or decreasing the phase difference. Also, oscillation frequency plays a more significant role. Furthermore, under the action of single pectoral fin, the robotic shark can achieve spiral motion and the turning radius is about 35.8m under the parameters set in this article.


Author(s):  
Shusheng Bi ◽  
Hongwei Ma ◽  
Yueri Cai ◽  
Chuanmeng Niu ◽  
Yuliang Wang

Purpose – The paper aims to present a dynamic model of flexible oscillating pectoral fin for further study on its propulsion mechanism. Design/methodology/approach – The chordwise and spanwise motions of cow-nosed ray’s pectoral fin are first analyzed based on the mechanism of active/passive flexible deformation. The kinematic model of oscillating pectoral fin is established by introducing the flexible deformation. Then, the dynamic model of the oscillating pectoral fin is developed based on the quasi-steady blade element theory. A series of hydrodynamic experiments on the oscillating pectoral fin are carried out to investigate the influences of motion parameters on the propulsion performance of the oscillating pectoral fin. Findings – The experimental results are consistent with that obtained through analytical calculation within a certain range, which indicates that the developed dynamic model in this paper is applicable to describe the dynamic characteristics of the oscillating pectoral fin approximately. The experimental results show that the average thrust of an oscillating pectoral fin increases with the increasing oscillating amplitude and frequency. However, the relationship between the average thrust and the oscillating frequency is nonlinear. Moreover, the experimental results show that there is an optimal phase difference at which the oscillating pectoral fin achieves the maximum average thrust. Originality/value – The developed dynamic model provides the theoretical basis for further research on propulsion mechanism of oscillating pectoral fins. It can also be used in the design of the bionic pectoral fins.


Sign in / Sign up

Export Citation Format

Share Document