Automatic Glass Pick and Place by Industrial Robot

Author(s):  
Xiaowen Yu ◽  
Yu Zhao ◽  
Masayoshi Tomizuka

In glass manufacturing industry, glass grinding process has significant involvement of human workers. Human workers need to load and unload glass pieces to/from the grinder. A 6 DOF industrial robot could be used to automate the process by the “pick and place” task. In this paper, a vision system is implemented to robustly detect glass piece location and the placing destination. Two distinct detection methods are used for different glass settings. A “pick and place” trajectory is automatically generated based on the detected locations. A simulation is first performed to visualize robot motion before operating on the robot.

Author(s):  
Xiaowen Yu ◽  
Thomas Baker ◽  
Yu Zhao ◽  
Masayoshi Tomizuka

In the cell phone protective glass manufacturing industry, glass need to be first ground to a desired thickness, which requires human workers to place the glass pieces precisely into the grinder. We propose to use a 6 DOF industrial robot equipped with vision sensors to automate the process by the “pick and place” task. The precision of the placing depends not only on the vision detection, but also on the calibration of the camera and the glass plane. In this paper, a Maximum a Posteriori (MAP) method is proposed to increase the calibration accuracy. A nominal calibration is first obtained with standard method, then it is corrected with observations. Experimental results shows the increased accuracy of placing.


2019 ◽  
Vol 6 (12) ◽  
pp. 398-400
Author(s):  
Rodrigo Barbosa Tudeschini ◽  
Raphael Barbosa Carneiro de Lima ◽  
Luiz Flavio Martins Pereira ◽  
Álvaro Manoel de Souza Soares

Author(s):  
Xiaowen Yu ◽  
Thomas Baker ◽  
Yu Zhao ◽  
Masayoshi Tomizuka

In the protective glass manufacturing industry for cell phones, placing glass pieces into the slots of the grinder requires submillimeter accuracy which only can be achieved by human workers, leading to a bottle neck in the production line. To address such issue, industrial robot equipped with vision sensors is proposed to support human workers. The high placing performance is achieved by a two step approach. In the first step, an eye-to-hand camera is installed to detect the glass piece and slot with robust vision, which can put the glass piece close to the slot and ensures a primary precision. In the second step, a closed-loop controller based on visual servo is adopted to guide the glass piece into the slot with dual eye-in-hand cameras. However, vision sensor suffers from a very low frame rate and slow image processing speed resulting in a very slow placing performance. In addition, the placing performance is substantially limited by the system parameter uncertainty. To compensate for these limitations, a dual-rate unscented Kalman filter (UKF) with dual-estimation is adopted for sensor data filtering and online parameter identification without requiring any linear parameterization of the model. Experimental results are presented to confirm the effectiveness of the proposed approach.


2020 ◽  
Vol 4 (2) ◽  
pp. 48-55
Author(s):  
A. S. Jamaludin ◽  
M. N. M. Razali ◽  
N. Jasman ◽  
A. N. A. Ghafar ◽  
M. A. Hadi

The gripper is the most important part in an industrial robot. It is related with the environment around the robot. Today, the industrial robot grippers have to be tuned and custom made for each application by engineers, by searching to get the desired repeatability and behaviour. Vacuum suction is one of the grippers in Watch Case Press Production (WCPP) and a mechanism to improve the efficiency of the manufacturing procedure. Pick and place are the important process for the annealing process. Thus, by implementing vacuum suction gripper, the process of pick and place can be improved. The purpose of vacuum gripper other than design vacuum suction mechanism is to compare the effectiveness of vacuum suction gripper with the conventional pick and place gripper. Vacuum suction gripper is a mechanism to transport part and which later sequencing, eliminating and reducing the activities required to complete the process. Throughout this study, the process pick and place became more effective, the impact on the production of annealing process is faster. The vacuum suction gripper can pick all part at the production which will lower the loss of the productivity. In conclusion, vacuum suction gripper reduces the cycle time about 20%. Vacuum suction gripper can help lower the cycle time of a machine and allow more frequent process in order to increase the production flexibility.


1983 ◽  
Vol 16 (20) ◽  
pp. 337-341
Author(s):  
V.M. Grishkin ◽  
F.M. Kulakov

Sign in / Sign up

Export Citation Format

Share Document