Differential steering-based electric vehicle lateral dynamics control with rollover consideration

Author(s):  
Hui Jing ◽  
Rongrong Wang ◽  
Cong Li ◽  
Jinxiang Wang

This article investigates the differential steering-based schema to control the lateral and rollover motions of the in-wheel motor-driven electric vehicles. Generated from the different torque of the front two wheels, the differential steering control schema will be activated to function the driver’s request when the regular steering system is in failure, thus avoiding dangerous consequences for in-wheel motor electric vehicles. On the contrary, when the vehicle is approaching rollover, the torque difference between the front two wheels will be decreased rapidly, resulting in failure of differential steering. Then, the vehicle rollover characteristic is also considered in the control system to enhance the efficiency of the differential steering. In addition, to handle the low cost measurement problem of the reference of front wheel steering angle and the lateral velocity, an [Formula: see text] observer-based control schema is presented to regulate the vehicle stability and handling performance, simultaneously. Finally, the simulation is performed based on the CarSim–Simulink platform, and the results validate the effectiveness of the proposed control schema.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2892 ◽  
Author(s):  
Jie Tian ◽  
Jun Tong ◽  
Shi Luo

This paper investigates the skid steering of four-wheel independent-drive (4WID) electric vehicles (EV) and a differential steering of a 4WID EV with a steer-by-wire (SBW) system in case of steering failure. The dynamic models of skid steering vehicle (SSV) and differential steering vehicle (DSV) are established and the traditional front-wheel steering vehicle with neutral steering characteristics is selected as the reference model. On this basis, sideslip angle observer and two different sliding mode variable structure controllers for SSV and DSV are designed respectively. Co-simulation results of CarSim and Simulink show that the designed controller for DSV not only controls the yaw rate and sideslip angle of DSV to track those of the reference model exactly, but also ensures the robustness of the controlled system compared with the designed controller for SSV. And the differential driving torque needed to realize the differential steering is much smaller than that for skid steering, which indicates the possibility of the differential steering in case of steering failure.


Author(s):  
Yansong Peng ◽  
Fengchen Wang ◽  
Saikrishna Gurumoorthy ◽  
Yan Chen ◽  
Mutian Xin

Abstract In this paper, a vision-based path-tracking control strategy using four-wheel steering (4WS) is experimentally investigated via an automated ground vehicle (AGV). A low-cost monocular camera is used to continuously perceive the upcoming lane boundaries via capturing the preview road image frames. Based on the applied image processing algorithms, the vehicle lateral offset error with respect to the road center line and the heading angle error with respect to the road curvature are calculated in real time for the control purpose. The 4WS path-tracking controller is designed to minimize the two path-tracking errors of the AGV. The AGV with the 4WS system is utilized to perform the experimental tests on road to validate the path-tracking control design. For comparison, the road test is also conducted for the path-tracking control with only the front wheel steering. The experimental results show that the proposed 4WS is able to achieve better path-tracking performance.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1550-1553 ◽  
Author(s):  
Hao Pan ◽  
Run Sheng Song

Wheel hub motor used in drive system of pure electric vehicle has become hot research and future development. Based on a four-wheel independent drive(4WID) electric vehicles with wheel hub motors, the paper has made the research on electronic differential steering control strategy by using Ackermann steering model conditions, and the experimental results have also been analyzed for the actual steering control effects under differential control strategy.


2014 ◽  
Vol 487 ◽  
pp. 630-634 ◽  
Author(s):  
Zhi Xiong Lu ◽  
Jiang Xue Chang ◽  
Xue Feng Bai ◽  
Yang Lu ◽  
Jun Gan Wu

The structure and working principle of the hydraulic steering by-wire system were described, and the optimal control algorithm of the system was obtained by the comparative analysis. Fuzzy control was chosen as the steering systems control algorithm, and it can realize closed-loop control of the front wheel corner. Matlab/Simulink was used for the simulation of the entire system. The simulation got the fuel tank displacements response curve, and verified the accuracy of the system design, which can provide a reference to the design of tractors steering system. Bench test was proposed to verify the accuracy of the system. The bench test results showed that the hydraulic steering by-wire controller can realize systems steering function well, and the system improved the control accuracy and fast response characteristics.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Cong Li ◽  
Yun-Feng Xie ◽  
Gang Wang ◽  
Su-Qi Liu ◽  
Bing Kuang ◽  
...  

This paper investigates the experimental study of differential steering control of a four-wheel independently driven (FWID) electric vehicle (EV) based on the steer-by-wire (SBW) system. As each wheel of FWID vehicle can be independently driven, differential steering is realized by applying different driven torques to the front-two wheels. Firstly, the principle of the differential steering is analyzed based on the SBW system. When the differential steering is activated, the driver’s steering request is sent to the vehicle’s ECU. Then, the ECU gives different control signals to the front-left and front-right wheels, generating an external steering force on the steering components. The external steering force pushes the steering components to turn corresponding to the driver’s request. Secondly, to test the feasibility of differential steering, a FWID EV is assembled and the vehicle is equipped with four independently driven in-wheel motors. The corresponding control system is designed. Finally, the field test of the vehicle based on the proposed differential steering control strategy is performed. In the experiment, the fixed yaw rate tracking and varied yaw rate tracking maneuvers are employed. In the fixed yaw rate tracking, the vehicle can track the desired yaw rate well with differential steering. In addition, the vehicle can track the varied yaw rate with proposed differential steering. The test results confirm the feasibility and effectiveness of the differential steering. By using the differential steering, a backup steering is established without additional components; thus, the costs can be reduced and the reliability of the vehicle steering system can be enhanced, significantly.


2011 ◽  
Vol 480-481 ◽  
pp. 1074-1078 ◽  
Author(s):  
Bin Yang ◽  
Mao Song Wan ◽  
Qing Hong Sun

This paper presents a new steering control structure for vehicles equipped with four-wheel steering system. A linear model of the lateral dynamics is used in this paper. This control structure is based on a simplified linear model of the lateral dynamics of such vehicles and aims to decouple the control of sideslip from the control of yaw rate. The control design is based on a linear multivariable plant and the front and rear steering angles, According to the Individual Channel Design paradigm. The proposed control structure has been applied to design sideslip and yaw rate controllers using a more accurate model of the lateral dynamics of four-wheel steering vehicles. Simulations are used to illustrate the performance and robustness of the designed controllers.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 958
Author(s):  
Maosheng Zhang ◽  
Yu Bai ◽  
Shu Yang ◽  
Kuang Sheng

With the increasing integration density of power control unit (PCU) modules, more functional power converter units are integrated into a single module for applications in electric vehicles or hybrid electric vehicles (EVs/HEVs). Different types of power dies with different footprints are usually placed closely together. Due to the constraints from the placement of power dies and liquid cooling schemes, heat-flow paths from the junction to coolant are possibly inconsistent for power dies, resulting in different thermal resistance and capacitance (RC) characteristics of power dies. This presents a critical challenge for optimal liquid cooling at a low cost. In this paper, a highly integrated PCU module is developed for application in EVs/HEVs. The underlying mechanism of the inconsistent RC characteristics of power dies for the developed PCU module is revealed by experiments and simulations. It is found that the matching placement design of power dies with a heat sink structure and liquid cooler, as well as a liquid cooling scheme, can alleviate the inconsistent RC characteristics of power dies in highly integrated PCU modules. The findings in this paper provide valuable guidance for the design of highly integrated PCU modules.


Author(s):  
Zhonghui Yin ◽  
Jiye Zhang ◽  
Haiying Lu

To solve the urbanization and the economic challenges, a virtual track train (VTT) transportation system has been proposed in China. To evaluate the dynamic behavior of the VTT, a spatial dynamics model has been developed that considers the suspension system and the steering system. Additionally, the model takes into account road irregularity to make simulations more realistic. Based on the newly proposed dynamic model and a designed proportional–integral–derivative (PID) controller, simulation frames of the vehicle and of the VTT are established with the path-tracking performance. The results show that the vehicle and the VTT can run along a desired lane with allowable errors, verifying the proposed model. The vehicle and VTT with the four-wheel steering system show a better dynamic performance than the models with the front-wheel steering system in the curved section. Moreover, the simulation frame can be further applied to dynamics-related assessments, parameter optimization and active suspension control strategy.


Author(s):  
Huiran Wang ◽  
Qidong Wang ◽  
Wuwei Chen ◽  
Linfeng Zhao ◽  
Dongkui Tan

To reduce the adverse effect of the functional insufficiency of the steering system on the accuracy of path tracking, a path tracking approach considering safety of the intended functionality is proposed by coordinating automatic steering and differential braking in this paper. The proposed method adopts a hierarchical architecture consisting of a coordinated control layer and an execution control layer. In coordinated control layer, an extension controller considering functional insufficiency of the steering system, tire force characteristics and vehicle driving stability is proposed to determine the weight coefficients of automatic steering and the differential braking, and a model predictive controller is designed to calculate the desired front wheel angle and additional yaw moment. In execution control layer, a H∞ steering angle controller considering external disturbances and parameter uncertainty is designed to track desired front wheel angle, and a braking force distribution module is used to determine the wheel cylinder pressure of the controlled wheels. Both simulation and experiment results show that the proposed method can overcome the functional insufficiency of the steering system and improve the accuracy of path tracking while maintaining the stability of the autonomous vehicle.


Sign in / Sign up

Export Citation Format

Share Document