Integration of Multibody System Dynamics With Sliding Mode Control Using FPGA Technique for Trajectory Tracking Problems

Author(s):  
Ayman A. Nada ◽  
Abdullateef H. Bashiri

Trajectory tracking robotic systems require complex control procedures that occupy less space and need less energy. For these reasons, the development of computerized and integrated control systems is crucial. Recently, developing reconfigurable Field Programmable Gate Arrays (FPGAs) give a prominence of the complete robotic control systems. Furthermore, it has been found in the literature that the model-based control methods are most efficient and cost-effective. This model must interpret how multiple moving parts interact with each other and with their environment. On the other hand, MultiBody Dynamic (MBD) approach is considered to solve these difficulties to attain the models accurately. However, the obtained equations of motion do not match the well-developed forms of control theory. In this paper, the MBD model of a mobile robot is established; and the equations of motion are reshaped into their control canonical form. Additionally, the Sliding Mode Control (SMC) theory is used to design the control law. The constraints’ manifold, which is available in the equations of the MBD system, are imposed systematically as the switching surface. SMC is applied because of its ability to address multiple-input/multiple-output nonlinear systems without resorting any approximations. Eventually, the experimental verification of the proposed algorithm is carried out using DaNI mobile robot in which, a Reconfigurable Input/Output (RIO) board is used to reorient the control design, so that can fit the required trajectory. The control law is implemented using LabVIEW software and NI-sbRIO-9631 with acceptable performance. It is obvious that the integration of MBD/SMC/FPGA can be used successfully to develop embedded systems for the applications of trajectory tracking robotics.

2011 ◽  
Author(s):  
N. M. Abdul Ghani ◽  
N. I. Mat Yatim ◽  
N. A. Azmi ◽  
Nader Barsoum ◽  
Jeffrey Frank Webb ◽  
...  

Author(s):  
Hashem Ashrafiuon ◽  
Vijay Reddy Jala

This paper presents a model-based sliding mode control law for mechanical systems, which use shape memory alloys (SMAs) as actuators. The systems under consideration are assumed to be fully actuated and represented by unconstrained equations of motion. A system model is developed by combining the equations of motion with SMA heat convection, constitutive law, and phase transformation equations, which account for hysteresis. The control law is introduced using asymptotically stable second-order sliding surfaces. Robustness is guaranteed through the inclusion of modeling uncertainties in the controller development. The control law is developed assuming only positions are available for measurement. The unmeasured states, which include velocities and SMA temperatures and stresses, are estimated using an extended Kalman filter based on the nonlinear system model. The control law is applied to a three-link planar robot for position control problem. Simulation and experimental results show good agreement and verify the robustness of the control law despite significant modeling uncertainty.


2006 ◽  
Vol 13 (3) ◽  
pp. 277-288 ◽  
Author(s):  
Michael Defoort ◽  
Thierry Floquet ◽  
Annemarie Kokosy ◽  
Wilfrid Perruquetti

Sign in / Sign up

Export Citation Format

Share Document