An Efficiency Entitlement Study for Thermoelectric Generators

Author(s):  
H. Peter J. De Bock ◽  
Vladimir Novak

Recent developments in thermoelectric materials and systems have led to renewed interest in thermoelectric devices for power generation. Operating conditions of the heat source and heat sink are essential in evaluating the conversion efficiency of such thermoelectric generator systems. This study provides a method for evaluating efficiency entitlement for thermoelectric power generation when thermoelectric material properties and system operating conditions are specified. The efficiency entitlement in closed form solutions for the most commonly used thermoelectric power generation configurations are presented followed by results and discussion.

Author(s):  
Tong Xing ◽  
Qingfeng Song ◽  
Pengfei Qiu ◽  
Qihao Zhang ◽  
Ming Gu ◽  
...  

GeTe-based materials have a great potential to be used in thermoelectric generators for waste heat recovery due to their excellent thermoelectric performance, but their module research is greatly lagging behind...


2019 ◽  
Vol 138 ◽  
pp. 236-242 ◽  
Author(s):  
Meysam Karami Rad ◽  
Alireza Rezania ◽  
Mahmoud Omid ◽  
Ali Rajabipour ◽  
Lasse Rosendahl

2017 ◽  
Vol 142 ◽  
pp. 558-563 ◽  
Author(s):  
Sajjad Mahmoudinezhad ◽  
Alireza Rezaniakolaei ◽  
Lasse Aistrup Rosendahl

1981 ◽  
Vol 103 (4) ◽  
pp. 693-698 ◽  
Author(s):  
M. S. Bohn

This paper presents a method for calculating the electrical power generated by a thermoelectric heat exchanger. The thermoelectric heat exchanger transfers heat from a hot fluid to a cold fluid through a thermoelectric generator located in the heat-exchanger wall separating the two fluid streams. The method presented here is an extension of the NTU method used to calculate heat-exchanger heat-transfer effectiveness. The effectiveness of thermoelectric power generation is expressed as the ratio of the actual power generated to the power that would be generated if the entire heat-exchanger area were operating at the inlet fluid temperatures. This method collapses results for several heat-exchanger configurations and allows a concise presentation of the results. It is shown that the NTU method of calculating heat-exchanger heat-transfer effectiveness can be modified in a similar way.


2008 ◽  
Vol 1102 ◽  
Author(s):  
S. Budak ◽  
S. Guner ◽  
T. Hill ◽  
M. Black ◽  
S. B. Judah ◽  
...  

AbstractThermoelectric materials are being important due to their application in both thermoelectric power generation and microelectronic cooling. The thermoelectric power generations convert the heat change to electricity. The waste of heat could be useful if the thermoelectric power generation is applied. Effective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. A high thermal conductivity causes too much heat leakage through heat conduction. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing K. In this study, we prepared thermoelectric generator devices of SiGe at the thickness of 112 nm using the ion beam assisted deposition (IBAD) system. Rutherford Backscattering Spectrometry (RBS) analysis was used for the elemental analysis. The 5 MeV Si ion bombardment was performed using the AAMU Pelletron ion beam accelerator to make quantum clusters in the film to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and electrical conductivity. To characterize the thermoelectric generator devices before and after Si ion bombardment we measured the cross plane Seebeck coefficient, electrical conductivity by Van der Pauw method, and thermal conductivity by 3w method for different fluences.


Sign in / Sign up

Export Citation Format

Share Document