Distributed Industrial Scale Hybrid Solar Concentrator Photovoltaics and Thermal Energy

Author(s):  
David N. Borton

While solar photovoltaic (PV) panels have been used successfully to produce electricity for quite some time, it has been technically difficult to capture their heat because of the large area of a flat-plate photovoltaic panel. Likewise it has been difficult to manufacture solar concentrator systems that are of the same physical scale, about one square meter, as successful commercial flat-plate photovoltaic panels and incorporate them into a commercializable and easily manufactured solar energy system. This paper addresses the two problems by considering the feasibility of a single design of a one square meter plastic nonimaging solar concentrator that focuses sunlight on a heat-capturing, dense array of high-intensity photovoltaic chips. The individual one square meter modules are designed to be mounted on a 2-axis tracking system which could have a double polar-axis support for energy and cost efficiency. When coupled with an existing electronic control, these three components create a commercial-scale solar electricity device that also provides heat in quantities suitable for heating or cooling. Preliminary contacts with electric utilities and commercial/industrial businesses have found interest in procurement of the proposed technology for widespread harvesting and use of solar energy in the US and abroad.

2018 ◽  
Vol 7 (3.18) ◽  
pp. 11
Author(s):  
Musse Mohamud Ahmed ◽  
Mohammad Kamrul Hasan ◽  
Mohammad Shafiq

The main purpose of this paper is to present a novel idea that is based on design and development of an automatic solar tracker system that tracks the Sun's energy for maximum energy output achievement. In this paper, a novel automatic solar tracking system has been developed for small-scale solar energy system. The hardware part and programming part have been concurrently developed in order for the solar tracking system to be possible for it to operate accurately. Arduino Uno R3, Sensor Shield V4 Digital Analog Module, LDR (Light Dependent Resistor), MPU-6050 6DOF 3 Axis Gyroscope has been used for tracking the angular sun movement as shown in Fig. 1. Accelerometer, High-Efficiency Solar Panel, and Tower Pro MG90S Servo Motor have been used for the hardware part. High-level programming language has been embedded in the hardware to operate the tracking system effectively. The tracking system has shown significant improvement of energy delivery to solar panel comparing to the conventional method. All the results will be shown in the full paper. There are three contributions the research presented in this paper which are, i.e. perfect tracking system, the comparison between the static and tracking system and the development of Gyroscope angular movement system which tracks the angular movement of the sun along with another tracking system.  


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
M. T. Dunham ◽  
R. Kasetty ◽  
A. Mathur ◽  
W. Lipiński

The optical performance of a novel solar concentrator consisting of a 400 spherical heliostat array and a linked two-axis tracking system is analyzed using the Monte Carlo ray-tracing technique. The optical efficiency and concentration ratio are compared for four different heliostat linkage configurations, including linkages of 1 × 1, 1 × 2, 2 × 2, 4 × 4, and 5 × 5 heliostats for 7-hour operation and the selected months of June and December. The optical performance of the concentrator decreases with the increasing number of heliostats in the individual groups due to increasing optical inaccuracies. In June, the best-performing linked configuration, in which 1 heliostat in the east-west direction and 2 heliostats in the north-south direction are linked, provides a monthly-averaged 7-hour optical efficiency and average concentration ratio of 79% and 511 suns, respectively. In December, the optical efficiency and the average concentration ratio decreases to 61% and 315 suns, respectively.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Orhan Ekren

Characteristics of site-specific solar irradiation is required to optimize a solar energy system. If no tracking system is used, the amount of electricity or heat produced by solar energy depends on the total solar radiation on a tilted surface. Although pyranometer measures direct plus diffuse solar radiation on a horizontal surface, there are many locations where diffuse radiation is not measured. Also, diffuse radiation is necessary to determine the total radiation on a tilted surface. Therefore, in this study, new correlations for diffuse solar radiation is proposed as a function of atmospheric parameters for Urla (Izmir, Turkey). After applying the statistical procedure on the measured data, seven new correlations are proposed for the ratio of hourly average diffuse and total radiation. Also, the ratio of monthly average daily diffuse and total radiation for this region is proposed.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012016
Author(s):  
Wen-Lan Wang ◽  
Xiong-Huai Bai

Abstract The Inner Mongolia has abundant solar energy and electricity resources. Because of the long distance between cities, transmission lines are too long, making it difficult to check lines. In order to solve the problems existing in the inspection work, this paper studies a kind of outdoor inspection vehicle using solar energy, the energy system of the inspection vehicle can independently complete the charge and discharge, so as to realize the inspection task. This paper focuses on the energy autonomy of the on-site inspection vehicle for solar energy. According to the design requirements of the inspection vehicle, appropriate parts are selected to build an energy autonomy inspection system for the inspection vehicle. Then the solar tracking algorithm and maximum power tracking control algorithm are used to improve the conversion rate of solar panels and achieve fast charging. Finally, the hardware and software of the solar controller are designed, and the corresponding functions are debugged.


2013 ◽  
Author(s):  
P. Rhushi Prasad ◽  
P. B. Gangavati ◽  
H. V. Byregowda ◽  
K. S. Badarinarayan

Now-a-days the field of applied mechanical systems opens new horizons for the use of orientation mechanisms. The opportunity to use mechanisms with a “sustainable purpose” leads to new approaches in the development of renewable energy systems design. The evaluation of the existing products shows that the tracking mechanisms for solar energy conversion systems may improve the efficiency of the solar energy conversion systems up to 30% to 50%. Applications of solar energy for domestic and industrial heating purposes have been becoming very popular. However the effectiveness of presently used fixed flat plate collectors, PV panels and parabolic collector are low due to the moving nature of the energy source. The presents research was carried out in the field of increasing the efficiency of the solar energy received by the solar collectors like PV panels, Flat plate collectors, Cylindrical Parabolic collectors using tracking systems by changing the position of the solar collectors correlated to the sun position for getting maximum radiation use of beam radiation falling on the solar collector. Two main aspects are taken into consideration, one optimizing the interaction between the mechatronic system components by integrating the analog electronic system by using a 555 timer in the mechanical model, and secondly by reducing the cost & time for the design process. The research work was carried out for location in chickballapur district at BGS R&D centre in Karnataka State, India. The results obtained in work is 24% increase in tracking efficiency of experimental model of flat plate collector, 30% increase in tracking efficiency in working model flat plate collector, 39 % increase in tracking efficiency of cylindrical parabolic collector and 36% increases in tracking efficiency of the Photovoltaic panel is found when compared to the non-tracking systems respectively. This paper presents the results of PV panel collector in detail for increasing the efficiency of the PV panel collector by tracking system with comparison of non-tracking system.


Author(s):  
P. Rhushi Prasad ◽  
P. B. Gangavati ◽  
H. V. Byregowda ◽  
K. S. Badarinarayan

Nowadays the field of applied mechanical systems opens new horizons for the use of orientation mechanisms. The opportunity to use mechanisms with a “sustainable purpose” leads to new approaches in the development of renewable energy systems design. In literature review many authors says the evaluation of the existing products shows that the tracking mechanisms for solar energy conversion systems may improve the efficiency of the solar energy conversion systems up to 30% to 50%. Applications of solar energy for domestic and industrial heating purposes are becoming very popular. However the effectiveness of presently used fixed flat plate collectors, photovoltaic panels and parabolic collector are low due to the moving nature of the energy source. This paper presents researches in the field of increasing the efficiency of the solar energy conversion by using tracking systems with flat plate collector of solar water heating system with the aim to change the position of the solar collector/solar panels correlated to the sun position for maximizing the use of beam radiation by real time digital tracking method. H.V. Byregowda et.al. optimized the interaction between the mechatronic system components by integrating the analog electronic system by using a 555 timer in the mechanical model by designing a single axis low cost tracking system of experimental model in order to reduce cost and show improvement in efficiency of tracking systems before beginning with the virtual prototype level. The work done by these authors was at chickballapur location in BGS R&D centre, SJCIT College. The result Obtained in their research work is that, the thermal efficiency was increased by 21% with tracking of manual method and by 24% with analog method of automatic tracking system. In the present work, a new method of tracking system has been developed electronically with solar water heating systems used in homes for water heating and Power utilization as multiple purpose domestic applications by adding real time clock (RTC) digital, microcontroller, DC motor, Electronics circuit board, batteries and photovoltaic panels along with water tank, flat plate collector which are existing at present in homes only for water heating applications. The results obtained in present work of digital tracking system the thermal efficiency of experimental working model of flat plate collector shows 30% increase when compared with tracking system and non tracking system.


2019 ◽  
Vol 5 (4) ◽  
pp. 6
Author(s):  
Anil Khatri ◽  
Prof. Nitin Tenguria

The increasing energy demand, continuous drawback of the existing sources of fossil fuels and increasing concern about environmental pollution pushed researchers to explore new technologies for the production of electricity from clean sources, renewable such as solar, wind etc. Solar energy is the oldest primary source of energy. It is a source of clean, renewable energy and it is found in abundance in every part of the world. Using solar energy is possible to convert it into mechanical energy or electricity with adequate efficiency. In this paper of the present of principal of solar cell and the temperature effect. And the Information about the quality and amount of solar energy available at a specific location is of prime importance for the development of a solar energy system. However, the amount of electricity that is obtained is directly proportional to the intensity of sunlight falling on the photovoltaic panel.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1048 ◽  
Author(s):  
Maria Simona Răboacă ◽  
Gheorghe Badea ◽  
Adrian Enache ◽  
Constantin Filote ◽  
Gabriel Răsoi ◽  
...  

Nowadays, the evolution of solar energy use has turned into a profound issue because of the implications of many points of view, such as technical, social, economic and environmental that impose major constraints for policy-makers in optimizing solar energy alternatives. The topographical constraints regarding the availability of inexhaustible solar energy is driving field development and highlights the need for increasingly more complex solar power systems. The solar energy is an inexhaustible source of CO2 emission-free energy at a global level. Solar thermal technologies may produce electric power when they are associated with thermal energy storage, and this may be used as a disposable source of limitless energy. Furthermore, it can also be used in industrial processes. Using these high-tech systems in a large area of practice emboldens progress at the performance level. This work compiles the latest literature in order to provide a timely review of the evolution and worldwide implementation of Concentrated Solar Power—CSP—mechanization. The objective of this analysis is to provide thematic documentation as a basis for approaching the concept of a polygeneration solar system and the implementation possibilities. It also aims to highlight the role of the CSP in the current and future world energy system.


Sign in / Sign up

Export Citation Format

Share Document