Optimum Design of Standalone Hybrid Energy Systems Minimizing Waste of Renewable Energy

Author(s):  
A. T. D. Perera

The importance of integrating renewable energy sources into standalone energy systems is highlighted in recent literature. Maintaining energy efficiency is challenging in designing such hybrid energy systems (HES) due to seasonal variation of renewable energy potential. This study evaluates the limitations in minimizing the losses in renewable energy generated mainly due to energy storage limitations and minimizing fuel consumption of the internal combustion generator (ICG). A standalone hybrid energy system with Solar PV (SPV), wind, battery bank and an ICG is modeled and optimized in this work. Levelized Energy Cost (LEC), Waste of Renewable Energy (WRE) and Fuel Consumption (FC) are taken as objective functions. Results highlight the importance of considering WRE as an objective function which increase the mix of energy sources that can help to increase the reliability of the system.

Author(s):  
A. T. D. Perera ◽  
R. A. Attalage ◽  
K. K. C. K. Perera

Expanding existing Internal Combustion Generator (ICG) systems by incorporating renewable energy sources is getting popular due to its potential to reduce the emission of Green House Gases (GHG) and fuel consumption. Designing such Hybrid Energy System (HES)s become challenging due to the seasonal variation of renewable energy sources resulting either poor reliability of power supply or higher expenditure, which makes it essential to optimize Levelized Energy Cost (LEC), unmet load fraction and renewable energy capacity at the early design stages. This study evaluates the results obtained through such optimization based on evolutionary algorithm. In order to accomplish this, mathematical modeling and simulation of a stand-alone HES was carried out along with the optimization. Obtained results shows that both wind and Solar PV (SPV) capacity is having a significant impact on LEC, unmet load fraction and fuel consumption.


Author(s):  
Marwa Mallek ◽  
Jalel Euchi ◽  
Yacin Jerbi

Hybrid energy systems (HESs) are an excellent solution for electrification of remote rural areas where the grid extension is difficult or not economical. Usually, HES generally integrate one or several renewable energy sources such as solar, wind, hydropower, and geothermal with fossil fuel powered diesel/petrol generator to provide electric power where the electricity is either fed directly into the grid or to batteries for energy storage. This chapter presents a review on the solution approaches for determining the HES systems based on various objective functions (e.g. economic, social, technical, environmental and health impact). In order to take account of environmental and health impacts from energy systems, several energy optimization model was developed for minimizing pollution and maximizing the production of renewable energy.


Author(s):  
Marwa Mallek ◽  
Jalel Euchi ◽  
Yacin Jerbi

Hybrid energy systems (HESs) are an excellent solution for electrification of remote rural areas where the grid extension is difficult or not economical. Usually, HES generally integrate one or several renewable energy sources such as solar, wind, hydropower, and geothermal with fossil fuel powered diesel/petrol generator to provide electric power where the electricity is either fed directly into the grid or to batteries for energy storage. This chapter presents a review on the solution approaches for determining the HES systems based on various objective functions (e.g. economic, social, technical, environmental and health impact). In order to take account of environmental and health impacts from energy systems, several energy optimization model was developed for minimizing pollution and maximizing the production of renewable energy.


2021 ◽  
Vol 294 ◽  
pp. 01004
Author(s):  
Sonja Kallio ◽  
Monica Siroux

To reduce carbon and greenhouse gas emissions, the more efficient and environmentally friendly energy production in the building sector is required. The deployment of renewable energy based microcogeneration units in the decentralized hybrid energy systems is a part of the solution. The micro combined heat and power (micro-CHP), or co-generation, units produce simultaneously heat and electricity from a single fuel source at high efficiency and close to the consumption point. These units offer significant benefits: reduced primary energy consumption, reduced CO2 emissions, and avoidance of distribution losses due to central plant and network construction. The objective of this paper is to present a review of available renewable energy based micro-CHP systems and to focus on the biomass and solar based conversion devices. Finally, a novel hybrid renewable energy system is presented by coupling renewable energy sources, such as solar and biomass for micro-CHP.


This paper comprises exploration of hybrid renewable energy sources (RES) such as solar PV, wind Energy etc. with respect to solar radiation and velocity of wind. Hybrid energy system is a magnificent option for providing power supply to remote locations where grid supply is not reachable. The renewable energy sources (RES) are integrated through DSP with proper programming such that maximum power is fetched through RES. Variations in the output power of solar and wind is analyzed using data obtained through proper integration of RES. The foremost objective of proposed paper is to provide uninterrupted power supply to demand side with scrutiny of hybrid energy sources.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3188
Author(s):  
Hossam A. Gabbar ◽  
Md. Ibrahim Adham ◽  
Muhammad R. Abdussami

Ocean-going ships are one of the primary sources of Greenhouse Gas (GHG) emissions. Several actions are being taken to reduce the GHG emissions from maritime vessels, and integration of Renewable Energy Sources (RESs) is one of them. Ocean-going marine ships need a large amount of reliable energy to support the propulsive load. Intermittency is one of the drawbacks of RESs, and penetration of RESs in maritime vessels is limited by the cargo carrying capacity and usable area of that ship. Other types of reliable energy sources need to be incorporated in ships to overcome these shortcomings of RESs. Some researchers proposed to integrate fossil fuel-based generators like diesel generators and renewable energy in marine vessels to reduce GHG emissions. As the penetration of RESs in marine ships is limited, fossil fuel-based generators provide most of the energy. Therefore, renewable and fossil fuel-based hybrid energy systems in maritime vessels can not reduce GHG emissions to the desired level. Fossil fuel-based generators need to be replaced by emissions-free energy sources to make marine ships free from emissions. Nuclear energy is emissions-free energy, and small-scale nuclear reactors like Microreactors (MRs) are competent to replace fossil fuel-based generators. In this paper, the technical, environmental, and economic competitiveness of Nuclear-Renewable Hybrid Energy Systems (N-R HES) in marine ships are assessed. The lifecycle cost of MR, reliability of the proposed system, and limitations of integrating renewable energy in maritime vessels are considered in this study. The proposed N-R HES is compared with three different energy systems, namely ‘Standalone Fossil Fuel-based Energy Systems’, ‘Renewable and Fossil Fuel-based Hybrid Energy Systems’, and ‘Standalone Nuclear Energy System’. The cost modeling of each energy system is carried out in MATLAB simulator. Each energy system is optimized by using the Differential Evolution Algorithm (DEA), an artificial intelligence algorithm, to find out the optimal configuration of the system components in terms of Net Present Cost (NPC). The results determine that N-R HES has the lowest NPC compared to the other three energy systems. The performance of the DE algorithm is compared with another widely accepted artificial intelligence optimization technique called ‘Particle Swarm Optimization (PSO)’ to validate the findings of the DE algorithm. The impact of control parameters in the DE algorithm is assessed by employing the Adaptive Differential Evolution (ADE) algorithm. A sensitivity analysis is carried out to assess the impact of different system parameters on this study’s findings.


2019 ◽  
Vol 8 (3) ◽  
pp. 5971-5977 ◽  

The energy demand within the world has improved for a few reasons because of technical advancements, increasing enterprises, and increasing commercial energy consumption. Sufficient energy models will support the accurate use of renewable resources like solar, wind, biomass, biogas, and the fuel cell is a portion of the advantages used. Hybrid energy systems of these advantages will contribute viably to sustainable development and electrification in rural areas that do not access power grids. This study reviews the performance analysis of hybrid system along with conventional resources for sustainable development in remote areas. This paper also reviews the recent trends in energy usage from available renewable energy sources in addition to examine an expansive review of the performance analysis of different hybrid energy technologies in rural areas. It is also discussed the relative investigation of hybrid energy systems along with conventional energy sources particularly suited to the small and isolated areas supported by the literature. In continuation of this, the paper also discusses the future energy sources.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1642 ◽  
Author(s):  
Hossam A. Gabbar ◽  
Muhammad R. Abdussami ◽  
Md. Ibrahim Adham

Renewable energy sources (RESs) play an indispensable role in sustainable advancement by reducing greenhouse gas (GHG) emissions. Nevertheless, due to the shortcomings of RESs, an energy mix with RESs is required to support the baseload and to avoid the effects of RES variability. Fossil fuel-based thermal generators (FFTGs), like diesel generators, have been used with RESs to support the baseload. However, using FFTGs with RESs is not a good option to reduce GHG emissions. Hence, the small-scale nuclear power plant (NPPs), such as the micro-modular reactor (MMR), have become a modern alternative to FFTGs. In this paper, the authors have investigated five different hybrid energy systems (HES) with combined heat and power (CHP), named ‘conventional small-scale fossil fuel-based thermal energy system,’ ‘small-scale stand-alone RESs-based energy system,’ ‘conventional small-scale fossil fuel-based thermal and RESs-based HES,’ ‘small-scale stand-alone nuclear energy system,’ and ‘nuclear-renewable micro hybrid energy system (N-R MHES),’ respectively, in terms of net present cost (NPC), cost of energy (COE), and GHG emissions. A sensitivity analysis was also conducted to identify the impact of the different variables on the systems. The results reveal that the N-R MHES could be the most suitable scheme for decarbonization and sustainable energy solutions.


Sign in / Sign up

Export Citation Format

Share Document