Optimal Design of Suspension Parameters of Flexible Multibody Vehicle Model Based on ADAMS Software and Improved Genetic Algorithms

Author(s):  
Jingjun Zhang ◽  
Yang Sun ◽  
Ruizhen Gao

In this paper a new method for the optimal design of suspension parameters of flexible mutibody vehicle model is presented. This method is developed based on the interface between the ADAMS software and the improved genetic algorithms in this paper. The 44 degrees of freedom flexible muitibody and the 33 degrees of freedom multi-rigid bodies vehicle model are chosen as examples for the optimal design of suspension parameters. The results show that the optimization method developed in this paper is better than the other methods.

2014 ◽  
Author(s):  
Terry Yan ◽  
Jason Yobby ◽  
Ravindra Vundavilli

The analysis for optimal design of an air-cooled internal combustion engine cooling fin array by using genetic algorithms (GA) is presented in this study. Genetic Algorithms are robust, stochastic search techniques which are also used for optimizing highly complex problems. In this study, the fin array is of the traditional circular fin type, which is subject to ambient convective heat transfer. The parameters (degrees of freedom) selected for the analysis include the cylinder wall thickness-to-radius ratio, fin thickness, fin length, the number of fins, and the local heat transfer coefficient. By using a single objective GA procedure, the heat transfer through the fin arrays is set as the objective function to be optimized with each parameter varied within the physical ranges. Proper population size is selected and the mutations, cross-over and selection are conducted in the GA procedure to arrive at the optimal set of parameters after a certain number of generations. The GA proves to be an effective optimization method in the thermal system component designs when the number of independent variables is large.


2017 ◽  
Vol 6 (3) ◽  
pp. 1-7
Author(s):  
Rudy Agustriyanto

In this research, PID (Proportional Integral Derivative) controller tuning was done using optimization method and the result was compared to the other well-known tuning methods (Direct synthesis, Ziegler– Nichols). The purpose of this research is to obtain the best output response when the set point and disturbance are changed. Tuning is a useful process to set the controller parameter that can affect the output response from the changing set point (servo problem) as well as from the disturbance (regulatory problem). The controller performance can be evaluated from the value of Sum Squares of Error when the system is controlled by PID controllers that is tuned with chosen method. The research result showed that optimization method was better than the other methods because it could give the best result.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Gang Han ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Qizhi Meng ◽  
Sai Zhang

Abstract Parameters optimization is complicated by various parameters and nonlinear design problems. In this paper, the interaction mechanism of motion/force transmissibility and various parameters on normalized motor torque and speed of a four degrees-of-freedom (4-DOF) high-speed parallel robot is analyzed. Based on this interaction mechanism, evaluation indices of acceleration capacity, speed ability, and adept cycle time are proposed. Through combining these indices with task requirements and technical criteria of driving systems, the technology-oriented constraints are set up and a parameter optimization method is proposed. With this method, the dimensional parameters, driving system specifications, and work pose of the robot have been synchronously optimized to ensure low driving torque and high pick-and-place frequency. This synchronous optimal design method is general and can be further applied to parameter optimization for different types of parallel robots.


Author(s):  
Jonathan B. Hopkins

In this paper we introduce the principles necessary to analyze and design serial flexure elements, which may be used to synthesize advanced compliant mechanisms (CMs). The most commonly used flexure elements (e.g., wire, blade, or living hinge flexures) are often parallel and thus impose constraining forces directly through all parts of their geometry to the rigid bodies that they join within the CM. Serial flexure elements, on the other hand, constrain rigid bodies with a larger variety of forces and moments and thus enable CMs to achieve (i) more degrees of freedom (DOFs), (ii) larger dynamic and elastomechanic versatility, and (iii) greater ranges of motion than parallel elements. In this paper, we extend the principles of the Freedom and Constraint Topologies (FACT) synthesis approach such that it enables the synthesis of CMs that are not only constrained by parallel flexure elements, but also by serial elements. FACT utilizes geometric shapes to intuitively guide designers in visualizing compliant element geometries that achieve any desired set of DOFs. In this way, designers can rapidly generate a host of new serial flexure elements for various CM applications. Such elements are provided here as case studies.


2019 ◽  
Vol 12 (4) ◽  
pp. 1567-1583
Author(s):  
Wenddabo Olivier Sawadogo ◽  
Pengdwende Ousseni Fabrice Ouedraogo ◽  
Ousseni So ◽  
Genevieve Barro ◽  
Blaise Some

In this paper, it is a question of identification of the parameters in the equation ofRichards modelling the flow in unsaturated porous medium. The mixed formulation pressure head-moisture content has been used. The direct problem was solved using Multiquadratic Radial Basis Function ( RBF-MQ ) method which is a meshless method. The Newton-Raphson’s method was used to linearize the equation. The function cost used is built by using the infiltration. The optimization method used is a meta-heuristic called Modified hybrid Grey Wolf Optimizer -Genetic Algorithm (HmGWOGA). A test on experimental data has been carried. We compared the results with genetic algorithms. The results showed that this new method was better than genetic algorithms.


Author(s):  
A. V. Crewe

We have become accustomed to differentiating between the scanning microscope and the conventional transmission microscope according to the resolving power which the two instruments offer. The conventional microscope is capable of a point resolution of a few angstroms and line resolutions of periodic objects of about 1Å. On the other hand, the scanning microscope, in its normal form, is not ordinarily capable of a point resolution better than 100Å. Upon examining reasons for the 100Å limitation, it becomes clear that this is based more on tradition than reason, and in particular, it is a condition imposed upon the microscope by adherence to thermal sources of electrons.


2012 ◽  
Vol 61 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Norio Takahashi ◽  
Shunsuke Nakazaki ◽  
Daisuke Miyagi ◽  
Naoki Uchida ◽  
Keiji Kawanaka ◽  
...  

3-D optimal design of laminated yoke of billet heater for rolling wire rod using ON/OFF method The optimization method using the ON/OFF sensitivity analysis has an advantage that an epoch-making construction of magnetic circuit may be obtained. Therefore, it is attractive for designers of magnetic devices. We have already developed the ON/OFF method for the optimization of a static magnetic field problem, and the effectiveness is verified by applying it to the optimization of magnetic recording heads. In this paper, the ON/OFF sensitivity method is extended to the optimization of the eddy current problem using the adjoint variable. The newly developed ON/OFF method is applied to the determination of the optimal topology of the yoke of the billet heater for rolling wire rod. As a result, the optimal shape of yoke, which we could not imagine beforehand can be obtained. It is shown that the local heating of the yoke was reduced without decreasing the heating efficiency.


Author(s):  
Maxim B. Demchenko ◽  

The sphere of the unknown, supernatural and miraculous is one of the most popular subjects for everyday discussions in Ayodhya – the last of the provinces of the Mughal Empire, which entered the British Raj in 1859, and in the distant past – the space of many legendary and mythological events. Mostly they concern encounters with inhabitants of the “other world” – spirits, ghosts, jinns as well as miraculous healings following magic rituals or meetings with the so-called saints of different religions (Hindu sadhus, Sufi dervishes),with incomprehensible and frightening natural phenomena. According to the author’s observations ideas of the unknown in Avadh are codified and structured in Avadh better than in other parts of India. Local people can clearly define if they witness a bhut or a jinn and whether the disease is caused by some witchcraft or other reasons. Perhaps that is due to the presence in the holy town of a persistent tradition of katha, the public presentation of plots from the Ramayana epic in both the narrative and poetic as well as performative forms. But are the events and phenomena in question a miracle for the Avadhvasis, residents of Ayodhya and its environs, or are they so commonplace that they do not surprise or fascinate? That exactly is the subject of the essay, written on the basis of materials collected by the author in Ayodhya during the period of 2010 – 2019. The author would like to express his appreciation to Mr. Alok Sharma (Faizabad) for his advice and cooperation.


2000 ◽  
Vol 1719 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Peter R. Stopher ◽  
David A. Hensher

Transportation planners increasingly include a stated choice (SC) experiment as part of the armory of empirical sources of information on how individuals respond to current and potential travel contexts. The accumulated experience with SC data has been heavily conditioned on analyst prejudices about the acceptable complexity of the data collection instrument, especially the number of profiles (or treatments) given to each sampled individual (and the number of attributes and alternatives to be processed). It is not uncommon for transport demand modelers to impose stringent limitations on the complexity of an SC experiment. A review of the marketing and transport literature suggests that little is known about the basis for rejecting complex designs or accepting simple designs. Although more complex designs provide the analyst with increasing degrees of freedom in the estimation of models, facilitating nonlinearity in main effects and independent two-way interactions, it is not clear what the overall behavioral gains are in increasing the number of treatments. A complex design is developed as the basis for a stated choice study, producing a fractional factorial of 32 rows. The fraction is then truncated by administering 4, 8, 16, 24, and 32 profiles to a sample of 166 individuals (producing 1, 016 treatments) in Australia and New Zealand faced with the decision to fly (or not to fly) between Australia and New Zealand by either Qantas or Ansett under alternative fare regimes. Statistical comparisons of elasticities (an appropriate behavioral basis for comparisons) suggest that the empirical gains within the context of a linear specification of the utility expression associated with each alternative in a discrete choice model may be quite marginal.


Sign in / Sign up

Export Citation Format

Share Document