Modeling of Boiling Liquid Expanding Vapor Explosion (BLEVE): Plane, Cylindrical and Spherical 1D Model

Author(s):  
G. A. Pinhasi ◽  
Y. Dahan ◽  
A. Dayan ◽  
A. Ullmann

A 1D plane, cylindrical and spherical numerical model was developed for estimating the thermodynamic and the dynamic state of the boiling liquid during a boiling liquid expanding vapor explosion (BLEVE) event. The model predicts, simultaneously, the flow properties of the expanding two-phase flashing mixture and its surrounding air. The possible presence of a shock wave formed by the fluid expansion through the air is accounted for in the model. Model predictions of the shock wave strengths, in terms of TNT equivalence for the various coordinate systems, were compared against those obtained by simple energy models. As expected, the simple energy models over predicts the shock wave strength. However, the simple model which accounts for the expansion irreversibility, produces results which are closer to current model predictions. For the 1D plane case the model simulates a BLEVE scenario in a tunnel, whereas for the spherical case the more realistic BLEVE scenario in free space is being studied.

Author(s):  
Karol Postawa

Abstract This work focuses on Two Phase Anaerobic Digestion – a novel approach to split reactions’ chain in two separated tanks, each with specialized microbe community to achieve the best possible efficiency for each part of conversion. More specifically, the article tackle the topic of evaluation the possibility to adapt a mathematical model, previously dedicated for Autogenerative High Pressure Digestion (AHPD), to make use of it in simulation of Temperature Phased Anaerobic Digestion (TPAD) process. A comprehensive study of available solutions for biogas production simulation in conventional and TPAD configuration is additionally performed. Basing on its results, a reference model from literature, for comparison purpose is selected. Revisions and modifications, necessary to adjust previously developed model, to TPAD process, are described. Also, additional improvements like redesigned pH calculating algorithm is presented. Finally, the comparison between model predictions, a reference model and pilot-scale data is carried out. The results show that our current model needs further optimization, however even at this stage it provides acceptable results in short-range simulations (not longer than 42 days). Further works should focus on process stability improvement, especially in the thermophilic stage of biogas production. There's an opportunity for innovation as the research shows that requirement of accurate, large-scale optimized TPAD process model, is still not fulfilled.


2016 ◽  
Vol 11 (1) ◽  
pp. 60-65 ◽  
Author(s):  
R.Kh. Bolotnova ◽  
E.F. Gainullina

The spherical explosion propagation process in aqueous foam with the initial water volume content α10=0.0083 corresponding to the experimental conditions is analyzed numerically. The solution method is based on the one-dimensional two-temperature spherically symmetric model for two-phase gas-liquid mixture. The numerical simulation is built by the shock capturing method and movable Lagrangian grids. The amplitude and the width of the initial pressure pulse are found from the amount of experimental explosive energy. The numerical modeling results are compared to the real experiment. It’s shown, that the foam compression in the shock wave leads to the significant decrease in velocity and in amplitude of the shock wave.


2014 ◽  
Vol 10 ◽  
pp. 27-31
Author(s):  
R.Kh. Bolotnova ◽  
U.O. Agisheva ◽  
V.A. Buzina

The two-phase model of vapor-gas-liquid medium in axisymmetric two-dimensional formulation, taking into account vaporization is constructed. The nonstationary processes of boiling vapor-water mixture outflow from high-pressure vessels as a result of depressurization are studied. The problems of shock waves action on filled by gas-liquid mixture volumes are solved.


Author(s):  
Harry S. Dixon

A previous paper entitled Storage Battery Explosions: Hydrogen or BLEVE.? showed that contrary to popular belief storage battery explosions concurrent with or following a high rate of discharge were BLEVE (Boiling Liquid Expanding Vapor Explosion) explosions rather than hydrogen. The bases of that paper were the explosions of two batteries. Because of low liquid in a cell there had been excessive localized heating, actually superheating, between the plates. However, other than the explosion resulting from alleged superheating there was no other indication nor evidence of heating. This paper describes a BLEVE explosion that resulted simply from jarring after the overheating of the battery which had been subjected to high current drain in attempting to start the automobile. It is referred to as the Salaam case.


Author(s):  
Fengyu Ren ◽  
Yang Liu ◽  
Jianli Cao ◽  
Rongxing He ◽  
Yuan Xu ◽  
...  

In this paper, a two-phase model of air shock wave induced by rock-fall was described. The model was made up of the uniform motion phase (velocity was close to 0 m·s-1) and the acceleration movement phase. The uniform motion phase was determined by experience, meanwhile the acceleration movement phase was derived by the theoretical analysis. A series of experiments were performed to verify the two-phase model and obtained the law of the uniform motion phase. The acceleration movement phase was taking a larger portion when height of rock-fall was higher with the observations. Experimental results of different falling heights showed good agreements with theoretical analysis values. Computational fluid dynamics (CFD) numerical simulation had been carried out to study the variation velocity with different falling height. As a result of this, the two-phase model could accurately and convenient estimating the velocity of air shock wave induced by rock-fall. The two-phase model could provide a reference and basis for estimating the air shock waves' velocity and designing the protective measures.


2010 ◽  
Vol 97-101 ◽  
pp. 2155-2158
Author(s):  
Jian Qiu Zhou ◽  
Lu Ma ◽  
Rong Tao Zhu

Due to their dissimilar properties and different deformation mechanisms between grain interior (GI) and grain boundary affected zone (GBAZ) in the nanocrystalline (NC) materials, a two-phase composite model consisting of GI and GBAZ was developed and adopted to build strain gradient plasticity theory. Comparison between experimental data and model predictions at different grain sizes for NC copper shows that the developed method appears to be capable of describing the strain hardening of NC materials.


Sign in / Sign up

Export Citation Format

Share Document